Embedded IDE Link™ MU 1
User’s Guide

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

X L9

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Embedded IDE Link™ MU User’s Guide
© COPYRIGHT 2007-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

November 2007 Online only New for Version 1.0 (Release 2007b+)
March 2008 Online only Revised for Version 1.0.1 (Release 2008a)
October 2008 Online only Revised for Version 1.1 (Release 2008b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Getting Started

Product Overview

The Structure and Components of Embedded IDE Link
MU Softwareciiiiiiueennneennennn
Embedded IDE Link MU Components
Automation Interface
Project Generator i
Verificationoiuiininii i e

Configuring Embedded IDE Link MU and Green Hills®

MULTI Softwarec.ooiiiiiie .

Configuring Green Hills® MULTI to use Full Directory

Paths ... e

1-2

1-4
1-4

1-5
1-6

1-6

1-9

Automation Interface

2

Getting Started with Automation Interface
Introducing the Automation Interface Tutorial

Constructing Objects
Example — Constructor for ghsmulti Objects

Starting and Stopping Green Hills MULTI From the

MATLABDeSKtOp .« ovvvee e
Running the Interactive Tutorial
Querying Objects for Green Hills MULTI Software
Loading Files into Green Hills MULTI Software
Visibility and MULTI,
Running the Project
Working With Data in Memory
More Memory Data Manipulation
Closing the Connections to Green Hills MULTI Software ..
Tasks Performed During the Tutorial

2-2
2-2

2-5
2-10
2-10
2-12
2-13
2-14
2-14
2-17
2-20
2-20

2-22
2-22

iii

Properties and Property Values 2-24

Working with Properties 2-24
Setting and Retrieving Property Values 2-24
Setting Property Values Directly at Construction 2-25
Setting Property Values withset 2-25
Retrieving Properties withget 2-26
Direct Property Referencing to Set and Get Values 2-26
Overloaded Functions for ghsmulti Objects 2-27
ghsmulti Object Properties 2-28
Quick Reference to ghsmulti Properties 2-28
Details About ghsmulti Object Properties 2-28

Project Generator

3

Introducing Project Generator 3-2
Using the Embedded IDE Link MU Blockset 3-3
Schedulers and Timing 3-10
Timer-Based Versus Asynchronous Interrupt
Processing 3-10
Synchronous Scheduling 3-11
Asynchronous Scheduling 3-12
Scheduling Blocksiiiiiiiiiii... 3-12
Asynchronous Scheduler Examples 3-13
Uses for Asynchronous Scheduling 3-15
Project Generator Tutorial 3-17
Process for Building and Generating a Project 3-17
Createthe Model 3-18
Adding the Target Preferences Block to Your Model 3-19
Specifying Simulink Configuration Parameters for Your
Model e 3-22
Creating Your Projecto iiiiiineinn... 3-24

iv Contents

Setting Real-Time Workshop Code Generation Options

for Supported Processors 3-26
Setting Real-Time Workshop Category Options 3-29
About Select Tree Category Options 3-29
Target Selectioncoiiiiiiiieinnnnn. 3-30
Build Process 3-31
Custom Storage Classcoiiiiiinnnneennnnn. 3-31
Report Options ..., 3-31
Debug Pane Optionscouiiiiiiinnnn. 3-32
Optimization Pane Options 3-33
Embedded IDE Link MU Pane Options 3-35
Overrun Indicator and Software-Based Timer 3-41

Model Reference and Embedded IDE Link MU

q |

Softwareiiiiii e e 3-42
About Model Reference, 3-42
How Model Reference Works 3-42
Using Model Reference with Embedded IDE Link MU
Softwareoiiii e e e 3-44
Configuring Targets to Use Model Reference 3-45
Verification
What Is Verification? 4-2
Using Processor-in-the-Loop 4-3
Processor-in-the-Loop Overview 4-3
PILBlock ... e e e e 4-6
PIL Issuesiiiiiiiii ittt 4-6
Creating and Using PIL Blocks 4-10
Real-Time Execution Profiling 4-13
OVeIVIEW ittt ettt e e e e e 4-13
Profiling Execution by Tasks 4-14

Profiling Execution By Subsystems 4-16

vi

Contents

Function Reference

5

Constructor i 5-2
File and Project Operations 5-3
Processor Operationsccuiiinunn... 5-4
Debug Operationsc.coiiiiiinnnnnnnn.. 5-5
Data Manipulation 5-6
Status Operationscuiiiiiiiinnnn... 5-7

Functions — Alphabetical List

6

Block Reference

7

Blackfin Support 7-2
Core SUpport i e e 7-3
MPC5500 Supportcoiiiiii i 7-4
MPC7400 Supportciiiiiii i 7-5
Target Preferences 7-6

Blocks — Alphabetical List

8|

Embedded IDE Link MU Software Configuration

2

Al

Parameters

Embedded IDE Link MU Pane 9-2
Embedded IDE Link MU Overview 9-4
Export MULTTI link handle to base workspace 9-5
MULTI link handlenamec...... 9-7
Profile real-time execution, 9-9
Profile by e 9-11
Number of profiling samplestocollect 9-12
Inline run-time library functions 9-14
Projectoptions e 9-16
Compiler options string, 9-18
System stack size MAUS)cciiiiiiiinne... 9-21
System heap size MAUS) ..., 9-22
Buildaction 9-23
Interrupt overrun notification method 9-25
Interrupt overrun notification function 9-27
PIL block actiont 9-28
Maximum time allowed to build project (s) 9-30
Maximum time to complete MULTI operations (s) 9-32
Examples

Automation Interface A-2
Working with Links A-2
Asynchronous Scheduler A-2
Project Generator0 i, A-2

vii

Verification i, A-2

Index

viii Contents

Getting Started

® “Product Overview” on page 1-2

® “The Structure and Components of Embedded IDE Link MU Software”
on page 1-4

1 Getting Started

Product Overview

Embedded IDE Link™ MU software provides an interface between MATLAB®
and the Green Hills MULTI® IDE software. The software enables you to

® Access the processor

e Manipulate data on the processor

¢ Manage projects within the IDE
while using the MATLAB numerical analysis and simulation functions.

Embedded IDE Link MU software connects MATLAB and Simulink® with
Green Hills MULTI integrated development and debugging environment
from Green Hills®. The software enables you to use MATLAB and Simulink
to debug and verify embedded code running on many microprocessors that
Green Hills MULTI software supports, such as the Freescale™ MPC5500 and
MPC7400, Blackfin®, and NEC® V850 families.

Using the software, you can perform the following tasks and others related to
Model-Based Design:

¢ Function calls — Write scripts in MATLAB to execute any function in the
Green Hills MULTI IDE

e Automation — Write automated tests in MATLAB to execute on your
processor, including control and verification operations

® Host-Processor Communication — Communicate with the processor
directly from MATLAB, without going to the IDE

e Verification and Validation

= Load and execute projects into the Green Hills MULTI IDE software
from the MATLAB command line

Build and compile code, and then use vectors of test data and parameters
to test the code

= Build and compile your code, and then download the code to the
processor and execute it

1-2

Product Overview

® Design models — Design models and algorithms in MATLAB and Simulink
and run them on the processor

® Generate code — Generate executable code for your processor directly from
the models designed in Simulink, and execute it

Embedded IDE Link MU software includes a project generator component.
With the project generator component, you can generate a complete project
file for Green Hills MULTTI software from Simulink models, using C code
generated with Real-Time Workshop® software. Thus, you can use both
Real-Time Workshop and Real-Time Workshop® Embedded Coder™ software
to generate generic ANSI C code projects for Green Hills MULTI from
Simulink models. You can then build and run the code on supported
processors.

The following list suggests some of the uses for Embedded IDE Link MU
software:

® Create test benches in MATLAB and Simulink for testing your manually
written or automatically generated code running on a variety of DSPs

® Generate code and project files for Green Hills MULTI software from
Simulink models using both Real-Time Workshop and Real-Time Workshop
Embedded Coder software for rapid prototyping or deployment of a system
or application

® Build, debug, and verify embedded code on supported processors with
MATLAB, Simulink, and Green Hills MULTI software

® Perform processor-in-the-loop (PIL) testing of embedded code

1-3

1 Getting Started

1-4

The Structure and Components of Embedded IDE Link MU
Software

In this section...
“Embedded IDE Link MU Components” on page 1-4

“Automation Interface” on page 1-4

“Project Generator” on page 1-5
“Verification” on page 1-6

“Configuring Embedded IDE Link MU and Green Hills® MULTI Software”
on page 1-6

“Configuring Green Hills® MULTI to use Full Directory Paths” on page 1-9

Embedded IDE Link MU Components

Embedded IDE Link MU software comprises these components

e Automation Interface — Enables communication between MATLAB and
Green Hills® MULTI® software.

® Project Generation — Uses Simulink to let you build models, simulate
them, and generate code from the models directly to the processor.

e Verification — Validate and verify your projects. You can simulate
algorithms and processes in Simulink models and concurrently on your
processor. Comparing the concurrent simulation results helps verify the
fidelity of your model or algorithm code.

Automation Interface

The Automation Interface component enables you to use MATLAB functions
and methods to communicate with the Green Hills MULTI IDE software.
With the MATLAB functions, you can perform the following program
development tasks:

* Automate project management.

® Debug projects by manipulating the data in the processor memory (internal
and external) and registers.

The Structure and Components of Embedded IDE Link™ MU Software

e Exercise functions from your project on the processor.

® Communicate between the host and processor applications.

The Automation Interface component provides the following types of
functionality:

® Debug Component — Methods and functions for project automation,
debugging, and data manipulation.

® Function Call Component — Methods that enable you to invoke individual
functions on the processor.

® Host Processor Communication Component — Methods that support
various standard communication protocols, such as BTC, TCP/IP, and UDP.

Project Generator

The Project Generator component is a collection of methods that use the
Green Hills MULTI API to create projects in Green Hills MULTI and generate
code with Real-Time Workshop. With the interface, you can do the following:

® Automatic project-based build process — Automatically create and build
projects for code generated by Real-Time Workshop or Real-Time Workshop
Embedded Coder.

e Custom code generation — Use Embedded IDE Link MU software with
any Real-Time Workshop Embedded Coder System Target File (STF) to
generate both processor-specific and optimized code.

® Automatic downloading and debugging — Debug generated code in the
Green Hills MULTTI debugger, using either the instruction set simulator or
real hardware.

® (Create and build projects for Green Hills MULTI from Simulink models
— Project Generator uses Real-Time Workshop or Real-Time Workshop
Embedded Coder to build projects that work with supported processors.

® Generate custom code using the Configuration Parameters in your model
with the system target files multilink_ert.tlc and multilink_grt.tlc.

1 Getting Started

Verification

Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded IDE Link MU software provide
the following verification tools.

* Processor in the loop (PIL) cosimulation — Use cosimulation
techniques to verify generated code running in an instruction set simulator

or real hardware environment.

¢ Execution profiling — Gather execution profiling measurements with
Green Hills MULTI instruction set simulator to establish the timing

requirements of your algorithm.

Configuring Embedded IDE Link MU and Green Hills
MULTI Software

Embedded IDE Link MU software requires some information about your
MULTT installation before you can use the software to develop projects in
MULTT from MATLAB. To configure the interface between MATLABand
MULTI, provide the information in the following table. Embedded IDE Link
MU software provides a GUI-based configuration utility to help you configure
the software and interface.

GUI Configuration | Description

Parameter | Information

Directory MULTI Identifies the path to your Green Hills
installation software.
directory

ConfigurationPrimary Identifies the processor on which you are
processor developing.

Debug Debug server Specifies the type of debug server to use.

server type

Host name

Host name

Specifies the name of the machine that
runs your Embedded IDE Link MU
service.

Port
number

Port number

Specifies the port for communicating with
the host and Embedded IDE Link MU
service. The service listens on this port.

The Structure and Components of Embedded IDE Link™ MU Software

Configuring Your Embedded IDE Link MU Software

You must configure your installation before you start working with the
software and MULTI.

The software does not support using Analog Devices® Blackfin® compiler.
When you select your configuration during the configuration process,

do not select bfadi_standalone.tgt from the Configuration list.
bfadi_standalone.tgt uses the ADI compiler.

Follow these steps to open the Embedded IDE Link MU configuration utility:

Note You must perform this configuration process before using Embedded
IDE Link MU software.

1 Enter ghsmulticonfig at the MATLAB prompt.

The Embedded IDE Link MU Configuration dialog box opens, as shown in
the following figure.

=] Embedded IDE Link MU Configuration x|

— MULTI[R] Installation

Dhirecton: IE: hohsb 014 Browsze. .. |

Configuration: Ippc_standalu:une.tgt ;I

Debug server: Isimppu: -cpu=pph554 fazt -dec -rom_use_enty

— Embedded IDE Link MU Service

Hoszt name: IIu:u:thu:ust Fart nurmber: |4444

[Show zerver status window

OF LCancel | Help Apply

1 Getting Started

2 In the Directory field, enter the path to the executable file multi.exe
for your Green Hills MULTT installation. Click Browse to search for the
file if necessary.

3 From the Configuration list, select your primary processor. Embedded
IDE Link MU software supports a variety of processors. Choose
one that matches your development platform. In many cases, the
processor_standalone.tgt variants, such as ppc_standalone.tgt, work
well. Refer to your Green Hills MULTI documentation for more information
about the configuration options for processors.

4 Enter the debug server string in Debug server. The string you enter
sets specific values for processors, such as the board support library and
whether the processor is big or little endian.

The standard input string is debugconnection. To use a processor
simulator, such as the MPC5554 simulator, enter the string

simppc -cpu=ppc5554 -fast -dec-rom_use_entry

as shown in the figure. Your MULTI documentation provides more
information about the debug server options and how to use them. You
can find more debug server string for simulators in the reference material
for ghsmulticonfig.

5 In Host name, enter the name of the machine that is going to run the
Embedded IDE Link MU service. When you construct a ghsmulti object,
the ghsmulti function starts the Embedded IDE Link MU service. To
launch the service, the function needs to know where the service will
run. The Host name string identifies that location. The default value is
localhost, meaning the service runs on the local machine. No other input
is valid.

6 Enter the port number for the service in Port number.

Port number 4444 is the default port value. To change the port used, enter
a different value in this field. Verify that the port you enter is available. If
the port number you enter is not available, the Embedded IDE Link MU
service does not start. Thus, you get an error message in MATLAB when
you try to construct a ghsmulti object.

1-8

The Structure and Components of Embedded IDE Link™ MU Software

7 Select or clear Show server status window to specify whether the
Embedded IDE Link MU service status appears in the task bar. The
default value is to show the service status. Clearing Show server status
window hides the status in the task bar. Select this option as a best
practice. Keeping this option selected enables the software to shut down
the communication services for Green Hills MULTI completely.

8 Click OK to complete the configuration process and close the dialog box.

Configuring Green Hills MULTI to use Full Directory

Paths

When you install MULTI to use with the software, MULTI sets the Show
Paths option to use relative file paths. To ensure that projects and programs
build correctly, configure MULTI to use full directory paths. Follow these
steps to change the configuration in MULTI.

1 Start MULTI from your desktop.
2 Switch to the Project Manager tool.

3 Select View > Show Paths > Full Paths.

1-9

1 Getting Started

1-10

Automation Interface

® “Getting Started with Automation Interface” on page 2-2
® “Constructing Objects” on page 2-22

e “Properties and Property Values” on page 2-24

¢ “ghsmulti Object Properties” on page 2-28

2 Automation Interface

Getting Started with Automation Interface

In this section...

“Introducing the Automation Interface Tutorial” on page 2-2

“Starting and Stopping Green Hills MULTI From the MATLAB Desktop”
on page 2-5

“Running the Interactive Tutorial” on page 2-10

“Querying Objects for Green Hills MULTI Software” on page 2-10
“Loading Files into Green Hills MULTI Software” on page 2-12
“Visibility and MULTI” on page 2-13

“Running the Project” on page 2-14

“Working With Data in Memory” on page 2-14

“More Memory Data Manipulation” on page 2-17

“Closing the Connections to Green Hills MULTI Software” on page 2-20

“Tasks Performed During the Tutorial” on page 2-20

Introducing the Automation Interface Tutorial

Embedded IDE Link MU software provides a connection between MATLAB
software and a processor in Green Hills MULTI development environment.
You use MATLAB objects as a mechanism to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you while you debug and develop your application.
Another possible use for automation is creating MATLAB scripts that verify
and test algorithms that run in their final implementation on your production
processor.

Note Before using the functions available with the objects, you must
designate a server and processor in Green Hills MULTI software. The object
you create is specific to the server and processor you specify.

Getting Started with Automation Interface

To help you start using objects in the software, Embedded IDE Link MU
software includes a tutorial—multilinkautointtutorial.m. As you work
through this tutorial, you perform the following tasks that step you through
creating and using objects to interact with the Green Hills MULTI IDE:

1 Select your primary server and port.

2 Create and query objects to Green Hills MULTI IDE.

3 Use MATLAB to load files into Green Hills MULTI IDE.

4 Work with your Green Hills MULTTI IDE project from MATLAB.

5 Close the connections you opened to Green Hills MULTI IDE.

The tutorial covers some methods and functions for the software. The
following tables show functions and methods for the software. The functions
do not require an object. The methods require an existing ghsmulti object to
use as an input argument for the method.

Functions for Working with Green Hills MULTI

The following table shows functions that do not require an object.

Function Description

ghsmulti Construct an object that refers to a Green Hills
MULTI IDE instance. When you construct the
object you specify the IDE instance by host and
port.

ghsmulticonfig Set Embedded IDE Link MU software
preferences.

Methods for Working with ghsmulti Objects in Green Hills
MULTI

The following table presents some of the methods that require a ghsmulti
object.

2-3

2 Automation Interface

2-4

Methods Description

add Add file to project

address Return address and page for entry in symbol
table in Green Hills MULTI IDE

build Build project in Green Hills MULTI

cd Change working directory

connect Connect IDE to processor

display Display properties of object that references Green
Hills MULTI IDE

halt Terminate execution of process running on
processor

isrunning Test whether processor is executing process

load Load built project to processor

open Open file in project

read Retrieve data from memory on processor

regread Read values from processor registers

regwrite Write data values to registers on processor

reset Restore program counter (PC) to entry point for
current program.

restart Restore processor to program entry point

run Execute program loaded on processor

visible Set whether Green Hills MULTI IDE window is
visible on desktop while Green Hills MULTI IDE
is running

write Write data to memory on processor

Running Green Hills MULTI on Your Desktop — Visibility

When you create a ghsmulti object in the tutorial in the next section,
Embedded IDE Link MU software starts Green Hills MULTIin the

background.

Getting Started with Automation Interface

If Green Hills MULTI is running in the background, the IDE windows, such
as the editor and debugger, do not appear on your desktop. MULTI does
appear in your task bar and on the Applications page in the Task Manager.
It shows up as a process, IDE.exe, on the Processes tab in Task Manager.

You can make the Green Hills MULTI IDE visible with the function visible.
To close the IDE when it is not visible and MATLAB is not running, use the
Processes tab in Windows Task Manager and look for IDE.exe.

If an object that refers to Green Hills MULTI exists when you close Green
Hills MULTI, the application does not close. Windows moves it to the
background (it becomes invisible). Only after you clear all objects that access
Green Hills MULTI, or close MATLAB, does closing Green Hills MULTI
unload the application. You can see if Green Hills MULTI is running in the
background by checking in the Windows Task Manager or the task bar. When
Green Hills MULTI is running, the entry IDE.exe appears in the Image
Name list on the Processes tab.

Starting and Stopping Green Hills MULTI From the
MATLAB Desktop
Embedded IDE Link MU software

Embedded IDE Link MU software provides you the ability to control MULTI
software from the MATLAB command window. When you create a ghsmulti
object, MATLAB starts the services shown in the following table to enable
MATLAB to communicate with the Green Hills MULTI IDE:

Service Type for Process Name Description
Each Port
Python Service mpythonrun.exe Python is a programming

language the software uses
to establish a connection
between MATLAB and

MULTI.
Python Service svc_python.exe Connection to IDE.
Python Service svc_router.exe Connection to IDE.

2-5

2 Automation Interface

Service Type for
Each Port

Process Name

Description

Python Service

svc_statemgr.exe

Connection to IDE

Python Service

svc_window.exe

Connection to IDE.

Embedded IDE Link
MU service

Not applicable

Enables MATLAB to send
commands to the Green

Hills MULTTI development
environment. This is a child
process of the python services.

Each time you create a ghsmulti object, the software starts another set of the
python services shown in the table.

Starting Green Hills MULTI From MATLAB

When you use the ghsmulti function, the software starts two classes of
services—python services and the Embedded IDE Link MU service for each
new port. The entries in the following table describe how the software controls
the IDE when you create a ghsmulti object:

Create ghsmulti Object with ghsmulti | Status | Result
Function of IDE
Not The software starts
id=ghsmulti running| the Embedded

IDE Link MU
service and the
IDE connects to

the default host
name and port
number—1localhost
and 4444 as set in
the configuration
options.

Getting Started with Automation Interface

Create ghsmulti Object with ghsmulti
Function

Status
of IDE

Result

id=ghsmulti('hostname', 'localhost', 'portnum',4444)

Not
running

The software starts
the Embedded

IDE Link MU
service and the IDE
and connects to

the specified host
name and port
number—localhost
and 4444.

id2=ghsmulti

Running

The software
connects to the
existing Embedded
IDE Link MU
service connected
to the default host
name and port.

id2=ghsmulti('hostname', 'localhost’', 'portnum',4446

Running

The software starts
anew the Embedded
IDE Link MU
service connected
to the specified
host name and port
number.

When the software starts the Embedded IDE Link MU service, the following

service dialog box appears on your desktop:

+} Embedded IDE Link MU Se =1=1x]

Launcher

Hosthame: | localhost

Paort Hum: 4444

HClients: |1

kuliDir: | C:hghsh_ 01

2 Automation Interface

2-8

Information in the window provides details about the service. Clicking
Launcher opens the MULTI Launcher utility.

Stopping Green Hills MULTI From MATLAB

After you complete your development work with the software, best practice
suggests that you close the IDE from MATLAB. Two conditions control how
you close the IDE, as shown in the following table:

Getting Started with Automation Interface

The Embedded IDE Link MU
Service State

To Close the IDE

One or more services appear in the
task bar and the Embedded IDE
Link MU service dialog boxes are
visible.

Perform these steps:

1 Enter clear all in MATLAB to
remove the ghsmulti objects from
your workspace.

2 Verify that the MULTI clients are
no longer connected by checking
that #Clients in each service
dialog box 1s 0.

3 Close the service dialog boxes.

Services appear in the task bar
but the service dialog boxes are not
visible.

Perform these steps:

1 Enter clear all inMATLAB to
remove the ghsmulti objects from
your workspace.

2 Open the Microsoft®Windows
Task Manager.

3 Click Processes.

4 Select svc_router.exe from
the list. Closing this service
stops mpythonrun.exe,
svc_window.exe, and
svc_statemgr.exe.

5 Click End Now.

6 Select svc_python.exe from the
list.

7 Click End Now.

2 Automation Interface

2-10

Note Clicking the task bar icon for the service and selecting close does not
close the IDE correctly.

Running the Interactive Tutorial

You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run multilinkautointtutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next section. The interactive tutorial covers the same information
provided by the following tutorial sections. You can view the tutorial M-file
used here by clicking multilinkautointtutorial.m.

Querying Objects for Green Hills MULTI Software

In this tutorial section you create the connection between MATLAB and
Green Hills MULTI IDE. This connection, or ghsmulti object, is a MATLAB
object that you save as variable id. You use function ghsmulti to create
ghsmulti objects. ghsmulti supports input arguments that let you specify
values for ghsmulti object properties, such as the global timeout. Refer to the
ghsmulti reference information for more about the input arguments.

Use the generated object id to direct actions to your project and processor. In
the following tasks, id appears in all method syntax that interact with the
IDE primary target and the processor: The object id identifies and refers to a
specific instance of the IDE.

You must include the object in any method syntax you use to access and
manipulate a project or files in a session in Green Hills MULTTI software:

1 Create an object that refers to your selected service and port. Enter the
following command at the prompt.

id = ghsmulti('hostname', 'localhost’', 'portnum',4444)

If you watch closely, and your machine is not too fast, you see Green Hills
MULTTI appear briefly when you call ghsmulti. If Green Hills MULTI

Getting Started with Automation Interface

was not running before you created the new object, Green Hills MULTI
launches and runs in the background.

Usually, you need to interact with Green Hills MULTI while you develop
your application. The function visible, controls the state of Green Hills
MULTT on your desktop. visible accepts Boolean inputs that make
Green Hills MULTT either visible on your desktop (input to visible > 1)
or invisible on your desktop (input to visible = 0). For this tutorial, you
need to interact with the development environment, so use visible to
set the IDE visibility to 1.

To make Green Hills MULTI show on your desktop, enter the following
command at the command prompt:

visible(id,1)
Next, enter display(id) at the prompt to see the status information.

MULTI Object:

Host Name : localhost

Port Num 1 4444

Default timeout : 10.00 secs

MULTI Dir : C:\ghs\multi500\ppc\

Embedded IDE Link MU software provides three methods to read the
status of a processor:

e info — Return a structure of testable session conditions.
® display — Print information about the session and processor.

® isrunning — Return the state (running or halted) of the processor.
Verify that the processor is running by entering

runstatus = isrunning(id)

The MATLAB prompt responds with message that indicates the processor
is stopped:

runstatus =

0

2-11

2 Automation Interface

2-12

Loading Files into Green Hills MULTI Software

You have established the connection to a processor and board. Using three
methods you learned about the hardware, whether it was running, its type,
and whether Green Hills MULTI IDE was visible. Next, give the processor
something to do.

In this part of the tutorial, you load the executable code for the CPU in the
IDE. Embedded IDE Link MU software includes a tutorial project file for
Green Hills MULTI. Through the next commands in the tutorial, you locate
the tutorial project file and load it into Green Hills MULTI. The open method
directs Green Hills MULTI to load a project file or workspace file.

Note To continue the tutorial, you must identify or create a directory to
which you have write access. Embedded IDE Link MU software cannot create
a directory for you. Create one in the Microsoft Windows directory structure
before you proceed with the this tutorial.

Green Hills MULTI has its own workspace and workspace files that are
quite different from MATLAB workspace files and the MATLAB workspace.
Remember to monitor both workspaces. To change the working directory to
your writable directory:

1 Use cd to switch to the writable directory

prj_dir=cd('C:\ide_link_mu_demo")

where the name and path to the writable directory is a string,
such as C:\ide_link mu_demo as used in the example. Replace
C:\ide_link_mu_demo with the full path to your writable directory.

2 Change your working directory to the new directory by entering the
following command:

cd(id,prj_dir)

3 Use the following command to create a new Green Hills MULTI project
named debug_demo.gpj in the new directory:

Getting Started with Automation Interface

new(id, 'debug_demo.gpj')

Switch to the IDE to verify that your new project exists. Next, add source
files to your project.

4 Add the provided source file—multilinkautointtutorial.c to the project
debug_demo.gpj using the following command:

add(id, 'multilinkautointtutorial')
5 Save your project.
save(id, 'my_debug_demo.gpj', 'project')

Your IDE project is saved with the name my_debug_demo.gpj in your

writable directory. The input string ‘project’ specifies that you are saving
a project file.

6 Next, set the build options for your project. Use the following command to
set the compiler build options to use and specify a processor (optional).

setbuildopt(id, 'Compiler','-G',-cpu=V850)

The input argument - cpu=V850 is optional to specify the processor. Change
to processor designation to match your processor if necessary.

Visibility and MULTI

If MULTT is not running on your desktop when you create the multilink
object, Embedded IDE Link MU software starts MULTI and then configures
it to run in the background. Verify that MULTI is running by checking that
MULTTI appears on your task bar

Usually you need to interact with the IDE, so Embedded IDE Link MU
software provides a function called visible that controls whether MULTI is

visible. visible takes the following Boolean input argument:

® 0 hides the IDE on your desktop. It appears on the task bar.

¢ 1 makes all components of the IDE visible on your desktop.

The remainder of this tutorial requires that you interact with the IDE.

2-13

2 Automation Interface

2-14

visible(id,1) % Make the IDE visible on the desktop.

Running the Project

After you create dot_project_c.gpj in the IDE, you can use Embedded IDE
Link MU software functions to create executable code from the project and
load the code to the processor.

To build the executable and download and run it on your processor:

1 Use the following build command to build an executable module from the
project debug_demo.gpj.

build(id,'all',20) % Set optional time-out period to 20 seconds.

2 To load the new executable to the processor, use load with the project file
name and the object name. The name of the executable is debug_demo.

load(id, 'debug_demo',30); % Set time-out value to 30 seconds.

Embedded IDE Link MU software provides methods to control processor
execution—run, halt, and reset. To demonstrate these methods, use run to
start the program you just loaded on to the processor, and then use halt

to stop the processor.

1 Enter the following methods at the command prompt and review the
response in the MATLAB command window.

run(id) % Start the program running on the processor.
halt(id) % Halt the processor.
reset(id) % Reset the program counter to start of program.

Use isrunning after the run method to verify that the processor is running.
After you stop the processor, isrunning can verify that the processor has
stopped.

Working With Data in Memory

Embedded IDE Link MU software provides methods that enable you to read
and write data to memory on the processor. Reading and writing data depends
on the symbol table for your project. The symbol table is available only after
you load the executable into the debugger. This sections introduces address

Getting Started with Automation Interface

and dec2hex. Use them to read the addresses of two global variables—ddat
and idat.

1 After you load debug_demo into the debugger, enter the following commands
to read the addresses of ddat and idat:

ddatA=address(id, 'ddat')
ddatA =

3145744 0
ddatI=address(id, 'idat')
ddatI =

3145728 0

2 Review the results in hexadecimal representation.

dec2hex(ddatA)
ans =

300010
000000

dec2hex(ddatI)
ans =

300000
000000

After you load the target code to the processor, you can examine and modify
data values in memory, as the previous read function examples demonstrated.

For non-changing data values in memory (static values), the values are
available immediately after you load the program file.

2-15

2 Automation Interface

2-16

A more interesting case is looking at variable values that change during
program execution. Manipulating changing data values at intermediate points
during execution can provide helpful analysis and verification information.

To enable you to read and write data while your program is running, the
software provides methods to insert and delete breakpoints in the source
programs. Inserting breakpoints lets you pause program execution to read or
change variable data values. You cannot change values while your program is
running.

The method insert creates a new breakpoint at either a source file locations,
such as a line number, or at a physical memory address. insert takes either
the line number or the address as an input argument.

To read the values in the next section of this tutorial, use the following
methods to insert breakpoints at lines 24 and 29 in the source file
multilinkautointtutorial.c

1 Change directories to your original working directory.

cd(id,proj_dir);

2 (Optional for convenience) Create variables for the line numbers in the
source file.

brkpt24 = 24;
brtpt29 29;

3 Use the following commands to insert breakpoints on line 24 and line 29
of the source file:

insert(id, 'multilinkautointtutorial',brkpt24); Insert breakpoint on line 24.

o° o°

insert(id, 'multilinkautointtutorial',brkpt29); Insert breakpoint on line 29.

4 Open and activate the file in the IDE from the MATLAB command window
by issuing the following commands:

open(id, 'multilinkautointtutorial');

activate(id, 'multilinkautointtutorial');

Getting Started with Automation Interface

Activating multilinkautointtutorial.c transfers focus in the IDE to the
activated file. Switch to the IDE to verify that the file is in your project
and open.

When you look in the IDE debugger window, the breakpoints you added to
multilinkautointtutorial.c are marked by a STOP sign icon on lines 24
and 29.

A similar method, remove, deletes breakpoints.

To help you inspect the source file in the IDE and verify the breakpoints, the
open and activate methods display the file multilinkautointtutorial.c
in the IDE and force the source file to the front.

One final method actually connects the IDE to your hardware or simulator.
connect takes a ghsmulti object as an input argument to connect the specific
IDE primary target referenced by id to the associated processor.

More Memory Data Manipulation

The source file multilinkaautointtutorial.c defines two 1-by-4 global
data arrays—ddat and idat. You can locate the declaration in the file.
Embedded IDE Link MU software provides the read and write methods so
you can access the arrays from MATLAB. Find the declaration and note the
Initialization values.

This tutorial section demonstrates reading and writing data in memory, and
controlling the processor.

1 Get the address of the symbols ddat and idat. Enter the following
commands at the prompt.

ddat_addr=address(id, 'ddat'); % Get address from symbol table.
idat_addr=address(id, 'idat');

2 Create two MATLAB variables to specify the data types for ddat and idat.

ddat_type- 'double’;
idat_type='int32';

3 Declare some values in two MATLAB variables.

2-17

2 Automation Interface

2-18

ddat_value=double([pi 12.3 exp(-1) sin(pi/4)]);
idat_value=int32(1:4);

4 Stop the processor.
halt(id)

5 Reload the project. If you did not save the source file in the project,
reloading the project removes the breakpoints you added and move the
program counter (PC) to the start of the program.

% Reload program file (.gpj). Reset PC to program start.
reload(id,100);

6 Use the following commands to restore the breakpoints on line 24 and 29.

insert(id, 'multilinkautointtutorial.c',brkpt24);
insert(id, 'multilinkautointtutorial.c',brkpt29);

7 Use the following method to connect the IDE to the processor:
connect(id);

8 With the breakpoints in the code, run the program until it stops at the
first breakpoint on line 24.

run(id, 'runtohalt',30); % Set time-out to 30 seconds.

9 Check the current values stored in ddat and idat. Later in this tutorial
you change these values from MATLAB.

% Do ddat values match initialization values in the source?
ddatV=read(id,address(id, 'ddat',ddat_type,4)
idatV=read(id,address(id, 'idat',idat_type,4)
MMATLAB displays the values of ddatV and idatV.
ddatVv=
16.300 -2.1300 5.1000 11.8000

idatv=

Getting Started with Automation Interface

1 508 646 7000

10 Change the values in ddat and idat by writing new values to the memory
addresses.

% Write pi, 12.3, exp(-1), and .7070 to memory.
write(id,address(id, 'ddata'),ddat_value)

% Write vector [1:4] to memory.
write(id,address(id, 'idat'),idat_value)

11 Resume the program execution from the breakpoint and run until the
program stops.

run(id, 'runtohalt', '30); % Stop at next breakpoint (line 29).

12 Read the values in memory for ddat and idat to verify the changes.

% Read the data as double data type.
ddatV = read(id,address(id(id, 'ddat'),ddat_type,4)

ddatv=
3.1416 12.3000 0.3679 0.7071

% Read the data as int32 data type.
idatV = read(id,address(id, 'idat'),idat_type,4)

idatv=

The data stored in ddat and idat are what you wrote to memory.

13 After you review the data, restart the processor to run to return the PC
to the program start.

restart(id);

2-19

2 Automation Interface

Closing the Connections to Green Hills MULTI
Software

Objects that you create in Embedded IDE Link MU software have connections
to Green Hills MULTI IDE. Until you delete these objects, the Green Hills
MULTI process (Idde.exe in the Windows Task Manager) remains in
memory. Closing MATLAB removes these objects automatically, but there

may be times when it helps to delete the handles manually, without quitting
MATLAB.

Note When you clear the last ghsmulti object, the software does not close
the running Embedded IDE Link MU service. When it does close the IDE,
it does not save current projects or files in the IDE, and it does not prompt
you to save them.

A best practice is to save your projects and files before you clear ghsmulti
objects from your MATLAB workspace.

Use the following commands to close the project files in Green Hills MULTI
IDE and remove the breakpoints you added to the source file.

close(id, 'debug_demo.gpj', 'project') % Close the project file.
visible(id,1) % Make MULTI visible.
remove(id, ‘'multilinkautointtutorial.c',brkpt24);

remove(id, 'multilinkautointtutorial.c',brkpt29);

Finally, to delete your link to Green Hills MULTI use clear id.

You have completed the Automation Interface tutorial using Embedded IDE
Link MU software.

Tasks Performed During the Tutorial

During the tutorial you performed the following tasks:

1 Created and queried objects that refer to a session in Embedded IDE Link
MU software to get information about the session and processor.

2-20

Getting Started with Automation Interface

2 Used MATLAB software to load files into the Green Hills MULTI IDE and
used methods in MATLAB software to run that file.

3 Closed the links you opened to Green Hills MULTI software.

This set of tasks is used in any development work you do with signal
processing applications. Thus, the tutorial gives you a working process for
using Embedded IDE Link MU software and your signal processing programs
to develop programs for a range of processors.

2-21

2 Automation Interface

Constructing Objects

2-22

When you create a connection to a session in Green Hills MULTI using the
ghsmulti function, you create a ghsmulti object (in object-oriented design
terms, you instantiate the ghsmulti object). The object implementation relies
on MATLAB object-oriented programming capabilities like the objects in
MATLAB or Filter Design Toolbox™ software.

The discussions in this section apply to the objects in Embedded IDE Link MU
software. Because ghsmulti objects use the MATLAB software techniques,
the information about working with the objects, such as how you get or set
object properties or use methods, apply to the ghsmulti objects in Embedded
IDE Link MU software.

Like other MATLAB structures, ghsmulti objects have predefined fields
referred to as object properties.

You specify object property values by the following methods:

® Specifying the property values when you create the object

¢ Creating an object with default property values, and changing some or all
of these property values later

For examples of setting link properties, refer to “Setting Property Values
with set”.

Example — Constructor for ghsmulti Objects

The easiest way to create an object is to use the function ghsmulti to create
an object with the default properties. Create an object named id referring to a
session in Green Hills MULTI by entering the following syntax:

id = ghsmulti

MATLAB responds with a list of the properties of the object id you created
along with the associated default property values.

MULTI Object:
Host Name : localhost
Port Num : 4444

Constructing Objects

Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

The object properties are described in the ghsmulti documentation.

Note These properties are set to default values when you construct links.

2-23

2 Automation Interface

Properties and Property Values

2-24

In this section...

“Working with Properties” on page 2-24

“Setting and Retrieving Property Values” on page 2-24

“Setting Property Values Directly at Construction” on page 2-25
“Setting Property Values with set” on page 2-25

“Retrieving Properties with get” on page 2-26

“Direct Property Referencing to Set and Get Values” on page 2-26

“Overloaded Functions for ghsmulti Objects” on page 2-27

Working with Properties

Links (or objects) in this Embedded IDE Link MU software have properties
associated with them. Each property is assigned a value. You can set the
values of most properties, either when you create the link or by changing the
property value later. However, some properties have read-only values. Also, a
few property values, such as the board number and the processor to which
the link attaches, become read-only after you create the object. You cannot
change those after you create your link.

Setting and Retrieving Property Values

You can set ghsmulti object property values by either of the following
methods:

¢ Directly when you create the link — see “Setting Property Values Directly
at Construction”

® By using the set function with an existing link — see “Setting Property
Values with set”

Retrieve ghsmulti object property values with the get function.

Direct property referencing lets you either set or retrieve property values
for ghsmulti objects.

Properties and Property Values

Setting Property Values Directly at Construction

To set property values directly when you construct an object, include the
following entries in the input argument list for the constructor method
ghsmulti:

¢ A string for the property name to set, followed by a comma. Enclose the
string in single quotation marks as you do any string in MATLAB.

® The property value to associate with the named property. Sometimes this
value is also a string.

You can include as many property names in the argument list for the object
construction command as there are properties to set directly.

Example — Setting Link Property Values at Construction

Create a connection to an instance of the IDE in Green Hills MULTI software
and set the following object properties:

¢ Link to the specified MULTI instance and host.
® Specify the communication port on the host.

e Set the global timeout to 5 s. The default is 10 s.
Set these properties when you construct the object by entering

id = ghsmulti('hostname', 'localhost', 'portnum',4444, 'timeout',5);

The localhost, portnum, and timeout properties are described in Link
Properties, as are the other properties for links.

Setting Property Values with set

After you construct an object, the set function lets you modify its property
values.

Using the set function, you can Set link property values.

2-25

2 Automation Interface

Example — Setting Link Property Values Using set

To set the timeout specification for the link id from the previous section,
enter the following syntax:

set(id, 'timeout',8);

get(id, 'timeout');
ans=

The display reflects the changes in the property values.

Retrieving Properties with get

You can use the get command to retrieve the value of an object property.

Example — Retrieving Link Property Values Using get

To retrieve the value of the hostnameproperty for id, and assign it to a
variable, enter the following syntax:

host=get(id, 'hostname"')
host =

localhost

Direct Property Referencing to Set and Get Values

You can directly set or get property values using MATLAB structure-like
referencing. Do this by using a period to access an object property by name,
as shown in the following example.

Example — Direct Property Referencing in Links
To reference an object property value directly, perform the following steps:

1 Create a link with default values.

2 Change its time out and number of open channels.

2-26

Properties and Property Values

id = ghsmulti;
id.time = 6;

Overloaded Functions for ghsmulti Objects

Several methods and functions in Embedded IDE Link MU software have
the same name as functions in other MathWorks products. These functions
behave similarly to their original counterparts, but you apply them to an
object. This concept of having functions with the same name operate on
different types of objects (or on data) is called overloading of functions.

For example, the set command is overloaded for objects. After you specify
your object by assigning values to its properties, you can apply the methods
in this toolbox (such as address for reading an address in memory) directly
to the variable name you assign to your object. You do not have to specify
your object parameters again.

For a list of the methods that act on ghsmulti objects, refer to the Chapter 6,
“Functions — Alphabetical List” in the function reference pages.

2-27

2 Automation Interface

ghsmulti Object Properties

In this section...

“Quick Reference to ghsmulti Properties” on page 2-28

“Details About ghsmulti Object Properties” on page 2-28

Quick Reference to ghsmulti Properties

The following table lists the properties for the links in Embedded IDE Link
MU software. The second column indicates to which object the property
belongs. Knowing which property belongs to each object in an interface tells
you how to access the property.

Property
Name User Settable? | Description
hostname At construction | Reports the name of the host the
only Embedded IDE Link MU service in
Green Hills MULTTI that the object
references.
portnum At construction | Stores the number of the port to
only communicate with MULTI.
timeout Yes/default Contains the global timeout setting for
the link.

Some properties are read only. Thus, you cannot set the property value.
Other properties you can change at any time. If the entry in the User Settable
column is “At construction only,” you can set the property value only when
you create the object. Thereafter, it is read only.

Details About ghsmulti Object Properties

To use the objects for Green Hills MULTI interface, set values for the
following:

® hostname — Specify the session with which the object interacts.

2-28

ghsmulti Object Properties

® portnum — Specify the processor in the session. If the board has multiple
processors, procnum identifies the processor to use.

® timeout — Specify the global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with ghsmulti objects appear in the
following sections, listed in alphabetical order by property name.

hostname

Property hostname identifies the host that is running the Embedded IDE Link
MU service. Use hostname to specify the machine to host your service.

To work with a service, you need the hostname and portnum values. Hostname
supports the string localhost only.

portnum

Property portnum specifies the port for communicating with the Embedded
IDE Link MU service. MATLAB uses sockets to communicate withGreen
Hills MULTI. The portnum property value specifies the port, with a default
value of 4444. When you create a new ghsmulti object, Embedded IDE Link
MU software assumes the port value is 4444 unless you enter a different
value when you configure the software or use the portnum input argument
with ghsmulti.

timeout

Property timeout specifies how long Green Hills MULTI waits for any process
to finish. You set the global timeout when you create an object for a session
in Green Hills MULTI. The default global timeout value 10 s. The following
example shows the timeout value for object id2.

display(id2)

MULTI Object:

Host Name : localhost

Port Num 1 4444

Default timeout : 10.00 secs

MULTI Dir : C:\ghs\multi500\ppc\

2-29

2 Automation Interface

2-30

Project Generator

¢ “Introducing Project Generator” on page 3-2

¢ “Using the Embedded IDE Link MU Blockset” on page 3-3
e “Schedulers and Timing” on page 3-10

® “Project Generator Tutorial” on page 3-17

o “Setting Real-Time Workshop Code Generation Options for Supported
Processors” on page 3-26

® “Setting Real-Time Workshop Category Options” on page 3-29
¢ “Model Reference and Embedded IDE Link MU Software” on page 3-42

3 Project Generator

Introducing Project Generator

Project generator provides the following features for developing projects and
generating code:

¢ Automated project building for Green Hills MULTI that lets you create

MULTTI projects from code generated by Real-Time Workshop and
Real-Time Workshop Embedded Coder™. Project generator populates
projects in the MULTI development environment.

Blocks in the library multilinklib for controlling the scheduling and
timing in generated code.

Highly configurable code generation using model configuration parameters
and target preferences block options.

Ability to use Embedded IDE Link MU software with one of two system
target files to generate code specific to your processor.

Highly configurable project build process.

Automatic downloading and running of your generated projects on your
processor.

To configure your Simulink models to use the Project Generator component,
do one or both of the following tasks:

¢ Add a Target Preferences block from the Embedded IDE Link MU blockset

(multilinklib) to the model.

¢ To use the asynchronous scheduler capability in Embedded IDE Link

MU software, add a hardware interrupt block or idle task block from the
blockset multilinklib.

The following sections describe the blockset and the blocks in it, the scheduler,
and the Project Generator component.

Using the Embedded IDE Link MU Blockset

Using the Embedded IDE Link MU Blockset

Embedded IDE Link MU block library multilinklib comprises block
libraries that contain blocks designed for generating projects for specific
processors. The following table describes these libraries.

Library

Description

Blackfin DSP Support
(multilinklib_blackfin)

Block for task scheduling on Analog Devices
Blackfin processors

Core Support
(multilinklib coresupport)

Blocks for task scheduling and
manipulating memory on supported
processors

Target Preferences
(multilinklib_tgtprefs)

Block that configures models for supported
processors

MPC5500 Support
(multilinklib_mpc5500)

Block for task scheduling on Freescale
MPC5500 processors

MPC7400 Support
(multilinklib_mpc7400)

Block for task scheduling on Freescale
MPC7400 processors

Blocks for the processor families are almost identical. Each block has a
reference page that describes the options for the block. Use the Help browser
to get more information about a block shown in any of the following figures.

The first figure shows the main library of libraries in Embedded IDE Link

MU software.

3-3

3 Project Generator

E! Library:multilinklib - ||:| |£|

File Edit Wew Format Help

DEEHS| 2R ¢ 4|22

Target Care
Preferences Support
MPC5500 Blackfin
Support Support
MPC7400
Support

Block Libraries for
Embedded IDE Link MU

Copyright 2007-2008 The MathWorks, Inc.

Ready |100% LLocked i

Using the Embedded IDE Link MU Blockset

The next figure shows the Blackfin Support library.

E! Library: multilinklib_blz — |I:| |£|

File Edit Wiew Formak Help

Blackfin DSP
Support Library

Bladkfin
IRCM B

Hardware Intemrupt

Hardware Intemrupt

Copyright 2007 The MathWaorks, Inc.

Ready |100% |Locked v

The Core Support library contains the blocks shown in the next figure.

3-5

3 Project Generator

E! Library: multilinklib_coresupport - IEI Ill
File Edit View Format Help

Embedded IDE Link MU
Core Support Blocks

= (] dst p

Memaory Allocate Memory Copy

Memaory Allocate Memory Copy

Idle Task
Idle Task

Copyright 2006-2007 The MathWarks, Inc.

Ready |100% |Locked v

The target preferences library for all supported processors appears in the
next figure.

3-6

Using the Embedded IDE Link MU Blockset

E! Library: multilinklib_tgtpref — |I:| |£|
File Edit Wiew Formab Help

Embedded IDE Link({TA) MU
Template Target Preference Block
for Custom Boards

Custorn Board

Copyright 2006-2007 The MathWorks, Inc.

The MPC5500 Support library appears in the next figure.

3 Project Generator

E! Library: multilinklib_mpc5500 - |I:| |£|
File Edit Wew Format Help

MPC5500
Support Library

MPCES00
IRCM
Hw/Sw Intemmupt

Intemrupt

Copyright 2007 The MathWorks, Inc.

Ready |100% LLocked G

The MPC7400 Support Library appears in the next figure.

Using the Embedded IDE Link MU Blockset

E! Library:multilinklib_mpc7400 — |I:| |£|
File Edit Wew Formab Help

Embedded IDE Link MU
MPC7400
Support Library

MPCT400
IR

Hw Intemupt

Interrupt

Copyright 2007-2008 The MathWorks, Inc.

Ready 100% LLocked G

3 Project Generator

Schedulers and Timing

3-10

In this section...

“Timer-Based Versus Asynchronous Interrupt Processing” on page 3-10
“Synchronous Scheduling” on page 3-11

“Asynchronous Scheduling” on page 3-12

“Scheduling Blocks” on page 3-12

“Asynchronous Scheduler Examples” on page 3-13

“Uses for Asynchronous Scheduling” on page 3-15

The following sections describe how Embedded IDE Link MU software
provides timing and scheduling for generated code running on your processor.

Timer-Based Versus Asynchronous Interrupt
Processing

Code generated for periodic tasks, both single- and multitasking, runs out

of the context of a timer interrupt. The code generated by model blocks for
periodic tasks runs periodically. A periodic interrupt with period equal to the
model base sample time clocks the generated code.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time O.

This execution scheduling scheme is not flexible enough for some systems,
such as control and communication systems that must respond to
asynchronous events in real time. Such systems often handle a variety of
hardware interrupts in an asynchronous, or aperiodic, fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

Schedulers and Timing

If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the Embedded IDE Link
The following table lists the scheduling blocks.

MU library to your model.

Block (Purpose) Processor | Description
Support
Library
Hardware Interrupt Blackfin Create interrupt service routine
(for asynchronous to handle hardware interrupt
scheduling) on Analog Devices Blackfin
processors
Idle Task Core DSP Create task that runs as separate
thread for any Green Hills
Software supported processor
Target Preferences Target Configure model for Green Hills
Preferences | Software supported processor
Hardware Interrupt MPC55xx Create interrupt service routine

(for asynchronous

scheduling)

to handle hardware interrupt on
Freescale processors

If your application does not service asynchronous interrupts, include in
your model only the algorithm and device driver blocks that specify the
periodic sample times. Generating code from a model configured this way
automatically enables and manages a timer interrupt. The periodic timer
interrupt clocks the entire model.

Synchronous Scheduling
For code that runs synchronously in the context of the timer interrupt, each

model iteration runs after an interrupt service routine (ISR) services a posted

interrupt. The code generated for Embedded IDE Link MU software uses

Timer 1. Timer 1 is configured so that the base rate sample time for the coded
process corresponds to the interrupt rate. Embedded IDE Link MU software

calculates and configures the timer period to ensure the correct sample rate.

The minimum achievable base rate sample time depends on the algorithm
complexity and the CPU clock speed. The maximum value depends on the
maximum timer period value and the CPU clock speed.

3-11

3 Project Generator

3-12

Simulink assigns a default sample time of 0.2s in the following case:

e All the blocks in the model inherit their sample time

® The sample time 1s not defined explicitly in the model

Asynchronous Scheduling

Embedded IDE Link MU software provides the interrupt and task scheduling
blocks shown in the following table to help you model and automatically
generate code for asynchronous systems.

Mode Block

Hardware or Software (MPC5500 Blackfin (Hardware interrupt only),

processors only) Driven Interrupt MPC5500 (software and hardware
Interrupts)

Free-Running Task for Bare-Board | Idle Task
Code Generation

Scheduling Blocks
Embedded IDE Link MU Hw/Sw Interrupt blocks perform the following

functions:

® Enable selected hardware interrupts for the supported processors

® Generate corresponding ISRs

¢ Connect the ISRs to the corresponding interrupt service vector table entries
When you connect the output of the Hw/Sw Interrupt block to the control

input of a function-call subsystem, the ISRs call the generated subsystem code
each time the enabled interrupt is raised.

The Idle Task block specifies one or more functions to execute as background
tasks in the code generated for the model. The functions are created from the
function-call subsystems to which the Idle Task block is connected.

Schedulers and Timing

Asynchronous Scheduler Examples
After you identify the blocks to use, you can use an asynchronous (real-time)

scheduler for your application. With the asynchronous scheduler, you can
schedule the execution of interrupts and tasks by using blocks from the
following libraries:

e Core Support

¢ Analog Devices Blackfin Support

® FreescaleMPC5500 Support

Also, you can schedule multiple tasks for asynchronous execution using the
blocks.

The following figures show a model updated to use the asynchronous
scheduler rather than the synchronous scheduler.

Note You cannot build or run the example models without additional blocks.
They provide example configurations only.

Before

In1 Outl

(v

Dead Zone fos
In2 Out?
In3 Outd

7 DLIPL! @
Ind Outd Outt

2 Asym 2: Asym
Dyadic Analysis Delay Alignment Soft Threshald Dyadic Synthesis
Filter Bank Filter Bank

tevy

YYYY

Broadband Noise

3-13

3-14

3 Project Generator

After

Idle Task

Idle Task

function)

Ot

Denoising
Algorithm

Schedulers and Timing

Model Inside the Function Call Subsystem Block

Je] In1 Outi —m]| Dead Zone . rhl/_
o In2 outz | —p] -
Eﬁl{ o] In2 Dut? —] 7—~—Z | m
2: Asym B Iné Qutd L > 2: Asym out
Dyadic Analysis Delay Alignment Soft Thrashald Dyadic Synthesis
Filter Bank Filter Bank

Broadband Moise

Uses for Asynchronous Scheduling

The following sections show common cases for the scheduling blocks described
in the previous sections.

Idle Task

The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

£

Idle Task
Idle Tash

functioni)

Feverberation
Elgorithm

3-15

3 Project Generator

3-16

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. However, the input and output blocks
in this subsystem run in blocking mode. As a result, subsystem execution of
the reverberation function is the same as the subsystem described for the
Free-Running Task. Task execution is data driven via a background DMA
interrupt-controlled ISR, shown in the following figure.

£

function

Feedback Gain

-2400

Integer Delav

Hardware Interrupt Triggered Task

In the next figure, you see a case where a function (control an LED) runs in
the context of a hardware interrupt triggered task.

IRDN

Harchware Interrupt i

functioni]

Harchrare Interrupt

LED Control

In this model, the Hardware Interrupt block installs a task that runs when it
detects an external interrupt. This task then performs the specified operation.

Project Generator Tutorial

Project Generator Tutorial

In this section...

“Process for Building and Generating a Project” on page 3-17
“Create the Model” on page 3-18
“Adding the Target Preferences Block to Your Model” on page 3-19

“Specifying Simulink Configuration Parameters for Your Model” on page
3-22

“Creating Your Project” on page 3-24

Process for Building and Generating a Project

In this tutorial, you build a model and generate a project from the model into
Green Hills MULTI.

Note The model shows project generation only. You cannot build and run
the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Use Simulink blocks, Signal Processing Blockset blocks, and blocks from
other blocksets to create the model application.

2 Add the target preferences block from the Embedded IDE Link MU Target
Preferences library to your model.

3 Double-click the Target Preferences block to open the block dialog box.

4 Select your processor from the Processor list. Verify and set the block
parameters for your hardware, such as CPU clock and the options on the
Memory and Section panes. In most cases, the default settings for the
selected processor work fine.

5 Set the configuration parameters for your model, including the following
parameters:

3-17

3 Project Generator

® Solver parameters such as simulation start and solver options. Choose
the discrete solver.

¢ Real-Time Workshop options such as processor configuration and
processor compiler selection

6 Generate your project.

7 Review your project in MULTI.

Create the Model
To build the model for this tutorial, follow these steps:

1 Start Simulink.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

Feedback Gain

i+

Jine Wave Integer Delay 3cope

Look for the Integer Delay block in the Discrete library of Simulink and the
Gain block in the Commonly Used Blocks library. This model implements
an audio signal reverberation scheme. Part of the input audio signal passes
directly to the output. A delayed version passes through a feedback loop
before reaching the output. The result is an echo, or reverberation, added
to the audio output.

3-18

Project Generator Tutorial

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model

So that you can configure your model to work with the supported processors,
the software includes the Target Preferences block library. The library
contains the Custom Board block that you use to configure models for any
of the supported processors.

Entering multilinklib_tgtpref at the MATLAB prompt opens this window

showing the block library. This block library is included in the Embedded IDE
Link MU multilinklib blockset in the Simulink Library browser.

3-19

3 Project Generator

E! Library:multilinklib - ||:| |£|

File Edit Wew Format Help

DEEHS| 2R ¢ 4|22

Target Core
Preferences Support
MPC5500 Blackfin
Support Support
MPC7400
Support

Block Libraries for
Embedded IDE Link MU

Copyright 2007-2008 The MathWorks, Inc.

Ready |100% LLocked i

To add the Target Preferences block to your model, follow these steps:

1 Double-click Embedded IDE Link MU in the Simulink Library browser to
open the multilinklib blockset.

2 Double-click the library Target Preferences to see the Custom Board block.

3 Drag and drop the Custom Board block to your model as shown in the
following figure.

3-20

Project Generator Tutorial

E! prog_gen_tutorial * i |EI |£|

File Edit WView Simulation Format Tools Help

DeHES fBR| e 4|2 llinf |Norma| VHE

Peedback ZFain

Jine Wave

Integer Delay Delay Mix

[
Custom Board

Ready [100% | [|FixedStepDiscrete y

4 Double-click the Custom Board block to open the block dialog box.
5 In the Block dialog box, select your processor from the Processor list.

6 Check the CPU clock value and change it if necessary to match your
processor clock rate.

7 Review the settings on the Memory and Sections tabs to verify that they
are correct for the processor you selected.

8 Click OK to close the Target Preferences dialog box.

You have completed the model. Next, configure the model configuration
parameters to generate a project in Green Hills MULTI from your model.

3-21

3 Project Generator

3-22

Specifying Simulink Configuration Parameters for
Your Model

The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink.

Setting Solver Options

After you have designed and implemented your digital signal processing
model in Simulink, complete the following steps to set the configuration
parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded IDE Link
MU software.

® Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this parameter to inf for completeness.

¢ Under Solver options, select the fixed-step and discrete settings
from the lists.

¢ Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Real-Time Workshop Code Generation Options

To configure Real-Time Workshop software to use the correct processor files,
compile your model, and run your model executable file, set the options in the

Project Generator Tutorial

Real-Time Workshop category of the model Configuration Parameters. Follow
these steps to set the Real-Time Workshop software options to generate code
tailored for your processor:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, click Browse to select the appropriate system target
file for code generation—multilink grt.tlc or multilink ert.tlc (f
you use Real Time Workshop Embedded Coder software). The correct
target file might already be selected.

Clicking Browse opens the System Target File Browser to allow you to
change the system target file.

3 On the System Target File Browser, select the proper system target file
multilink_grt.tlc or multilink_ert.tlc, and click OK to close the
browser.

Setting Embedded IDE Link MU Code Generation Options

After you set the Real-Time Workshop options for code generation, set the
options that apply to your Embedded IDE Link MU software run-time and
build processes.

1 From the Select tree, choose Embedded IDE Link MUto specify code
generation options that apply to the processor.

2 Set the following Runtime options:

¢ Build action: Create_project.

¢ Interrupt overrun notification method: Print_message.

3 (optional) Under Link Automation, verify that Export MULTI link
handle to base workspace is selected and provide a name for the handle
in MULTI link handle name.

4 Set the following options in the dialog box under Project options:

¢ Set Compiler options string to blank.

5 Under Code Generation, select the Inline run-time library functions
option. Clear all other options.

3-23

3 Project Generator

3-24

6 Change the category on the Select tree to Hardware Implementation.

7 Verify that the Device type is the correct value for your processor—Analog
Devices, NEC, or Freescale.

You have configured the Real-Time Workshop options that let you generate

a project for your processor. A few Real-Time Workshop categories on the
Select tree, such as Comments, Symbols, and Optimization do not require
configuration for use with Embedded IDE Link MU software. In some cases,
set options in the other categories to configure other code generation features.

For your new model, the default values for the options in these categories are
correct. For other models you develop, setting the options in these categories
provides more information during the build process. Some of the options
configure the model to run TLC debugging when you generate code. Refer to
your Simulink and Real-Time Workshop documentation for more information
about setting the configuration parameters.

Creating Your Project

After you set the configuration parameters and configure Real-Time Workshop
to create the files you need, you direct Real-Time Workshop to create your
project:

1 Click OK to close the Configuration Parameters dialog box.

2 To verify that you configured your Embedded IDE Link MU software
correctly, issue the following command at the prompt to open the Embedded
IDE Link MU Configuration dialog box.

ghsmulticonfig

3 Verify the settings in the Embedded IDE Link MU dialog box.
4 After you verify the settings, click OK to close the dialog box.

5 Enter cd at the prompt to verify that your working directory is the right
one to store your project results.

6 Click Incremental Build () on the model toolbar to generate your
project into Green Hills MULTI IDE.

Project Generator Tutorial

When you press with Create_project selected for Build action, the
build process starts the Green Hills MULTT application and populates a
new project.

3-25

3 Project Generator

Setting Real-Time Workshop Code Generation Options for
Supported Processors

If the model contains continuous-time states, set the fixed-step solver step
size and specify an appropriate fixed-step solver before you generate code. At
this time, select an appropriate sample rate for your system. Refer to the
Real-Time Workshop User’s Guide for additional information.

Note Embedded IDE Link MU software does not support continuous states
in Simulink models for code generation. In the Solver options in the
Configuration Parameters dialog box, select Discrete (no continuous
states) as the Type, along with Fixed step.

To open the Configuration Parameters dialog box for your model, select
Simulation > Configuration Parameters from the menu bar.

The following figure shows the Real-Time Workshop Select tree categories
when you are using Embedded IDE Link MU software.

3-26

Setting Real-Time Workshop® Code Generation Options for Supported Processors

¥4 Configuration Parameters: multilinksumdiff/ Configuration (Active) il
Select: —Runtime Options =
-~ Solver ; . -
- Data Import/Export Build action: IBulId_and_exetutE LI
--Optmization Interrupt overrun notification methed: INUI‘IE 'I
[=-Diagnostics
Maximum time allowed to build projects (g): | 1000
—Project Options
Compiler options string: I
i--Model Referencing
*-Saving System stack size (MAUs): |512
Hardware Implementation
-~ Model Referencing System heap size (MAUSs): I 512
[1-Simulation Target
F-Symbols —Cade Generation
iCustom Code
[El-Real-Time Warkshap ™ Profile real-time execution
Report ¥ Tnline run-time library functions
-~ Comments
- Symbols Link A
-~ Custom Code
~Debug Maximum time allowed to complete MULTI operations {s): | 10
- Interface
- Code Style ¥ Export MULTI link handle to base workspace
- Templates) -
--Data Placement MULTT link handle name: IIDE_ObJ
--Data Type Replacement T
--Memory Sections
ae-mbedded IDE Link MU
[
J- oK Cancel | Help | Apply |

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop software builds and runs your model. The
first categories in the tree under Real-Time Workshop apply to all Real-Time
Workshop targets and always appear on the list.

One category under Real-Time Workshop is specific to Embedded IDE Link
MU software and appears when you select either the multilink grt.tlc or
multilink ert.tlc system target file.

When you select your target file in Target Selection on the Real-Time
Workshop pane, the categories change in the tree.

For Embedded IDE Link MU software, the target file to select is
multilink grt.tlc. Selecting either the multilink grt.tlc or
multilink ert.tlc adds categories to the Select tree that are specific

3-27

3 Project Generator

3-28

to generating code with Embedded IDE Link MU software. The
multilink grt.tlc file is appropriate for all projects.

Select multilink ert.tlc when you are developing projects or code for
embedded processors (requires Real-Time Workshop Embedded Coder
software) or you plan to use Processor-in-the-Loop features (requires
Real-Time Workshop Embedded Coder software).

The following sections describe each Real-Time Workshop category and the
options available in each.

Setting Real-Time Workshop® Category Options

Setting Real-Time Workshop Category Options

In this section...

“About Select Tree Category Options” on page 3-29
“Target Selection” on page 3-30

“Build Process” on page 3-31

“Custom Storage Class” on page 3-31

“Report Options” on page 3-31

“Debug Pane Options” on page 3-32

“Optimization Pane Options” on page 3-33
“Embedded IDE Link MU Pane Options” on page 3-35

“Overrun Indicator and Software-Based Timer” on page 3-41

About Select Tree Category Options

Use the options in the Select tree under Real-Time Workshop to perform the
following configuration tasks:

® Specify your processor

® (Configure your build process.

® Specify whether to use custom storage classes.

When you select one of the Embedded IDE Link MU system target files, the

Embedded IDE Link MU category appears in the Select tree as shown in
the following figure.

3-29

3 Project Generator

3-30

¥ Configuration Parameters: untitled/Configuration (Active)
Select: — T arget selection
- Solver . m
. Data Import/Export System karget file: I multilink,_ert. e M
- [ptimization Language: I C ;I
£ Diagnostics Deescription: Embedded IDE Link MU [ERT] code generation for many supported processors
- Sample Time -
- [1aka W alicity r Build prac
- Tipe Co.n\.u'ersmn TLC options:l
- Connectivity) —
- Compatitility I akefile configuration
----Moc!el feleencig I~ | Generate makefile
- Saving
~Hardware Implementation Make command: I
- Model Referencin Template makefile: |
i

— Custom storage cla

- Comments

- Symbalz ™ lanore custom storage classes

- Cugtom Code

- Code Style

- Templates

- [ata Placement

- Data Type Replace. ..
- Memory Sections

-~ Embedded IDE Link...

0K I LCancel Help | Apply

- Debug ¥ | Generate code only Eimerls c:o_lde
- |nterface a

b |x

Target Selection

The following parameter enables you to select your system target file to
support code generation with Embedded IDE Link MU software.

System target file

Clicking Browse opens the Target File Browser where you select
multilink grt.tlc as your Real-Time Workshop System target file for
Embedded IDE Link MU software. When you select the target file, Real-Time
Workshop disables the makefile configuration options. Embedded IDE Link
MU software does not use makefiles. The software creates and uses MULTI
projects directly.

If you are using Real-Time Workshop Embedded Coder software, select the
multilink ert.tlc target file in System target file.

Setting Real-Time Workshop® Category Options

Build Process

Embedded IDE Link MUsoftware does not use makefiles or the build process
to generate code. Parameters in this group are not used.

Custom Storage Class

Use the parameter in this group to specify whether to use custom storage
classes. For more information about custom storage classes, refer to the
Real-Time Workshop documentation.

Ignore custom storage classes

When you generate code from a model that uses custom storage classes (CSC),
clear Ignore custom storage classes. This setting is the default value for
Embedded IDE Link MU software and for Real-Time Workshop Embedded
Coder software.

When you select Ignore custom storage classes, storage class attributes
and signals are affected in the following ways:

® Objects with CSCs are treated as if you set their storage class attribute
to Auto.

® The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Ignore custom storage classes lets you switch to a processor that does
not support CSCs, such as the generic real-time target (GRT), without
reconfiguring your parameter and signal objects.

Generate code only

The Generate code only option does not apply to targeting with Embedded
IDE Link MU software. To generate source code without building and
executing the code on your processor, select Embedded IDE Link MU from the
Select tree. Then, under Runtime, select Create_project for Build action.

Report Options

Two options control HTML report generation during code generation.

3-31

3 Project Generator

3-32

e “Create Code Generation report” on page 3-32

® “Launch report automatically” on page 3-32

Create Code Generation report

After you generate code, this option tells the software whether to generate
an HTML report that documents the C code generated from your model.
When you select this option, Real-Time Workshop writes the code
generation report files in the html subdirectory of the build directory. The
top-level HTML report file is named modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html. For more information about the report,
refer to the online help for Real-Time Workshop. You can also use the
following command at the MATLAB prompt to get more information.

docsearch 'Create code generation report'

In the Navigation options, when you select Model-to-code and
Code-to-model, your HTML report includes hyperlinks to various features
in your Simulink model.

Launch report automatically

This option directs Real-Time Workshop to open a MATLAB Web browser
window and display the code generation report. If you clear this option,
you can open the code generation report (modelname codegen_rpt.html or
subsystemname codegen_rpt.html) manually in a MATLAB Web browser
window or in another Web browser.

Debug Pane Options

Real-Time Workshop uses the Target Language Compiler (TLC) to generate
C code from the model.rtw file. The TLC debugger helps you identify
programming errors in your TLC code. Using the debugger, you can perform
the following actions:

e View the TLC call stack.
¢ Execute TLC code line-by-line.

® Analyze or change variables in a specified block scope.

Setting Real-Time Workshop® Category Options

When you select Debug from the Select tree, you see the Debug options as
shown in the next figure. In this dialog box, you set options that are specific to
Real-Time Workshop process and TLC debugging.

x
Select - Build proc =
Salver ¥ Verbose buid
Data Import/Expart
Optirnzation ™ Retain .rtw file
=1~ Diagnostics
+ Sample Time 7 T
-~ Data Validity ™ Prafile TLC
i~ Type Conversion ™ Start TLC debugger when generating cods
- Connectivity
i~ Compatibility ™ Start TLC coverage when generating cods
-~ Model Referencing ™ Enable TLC assettion
- Saving
~Hardware Implementation
- W odel Referencing
[=- Rleal-Time Workshop
Comments
Symbiols
Custom Code
Interface
Code Style
- Templates f
- Data Placement
+Data Type Replace...
-~ Memony Sections
- Embedded IDE Link..
=
oK I LCancel | Help | Apply |

For details about using the options in Debug, refer to “About the TLC

Debugger” in your Real-Time Workshop Target Language Compiler
documentation.

Optimization Pane Options

On the Optimization pane in the Configuration Parameters dialog box, you
set options for the code that Real-Time Workshop generates during the build
process. Use these options to tailor the generated code to your needs. Select

Optimization from the Select tree on the Configuration Parameters dialog

box. The figure shows the Optimization pane when you select the system

target file multilink_grt.tlc under Real-Time Workshop system target
file.

3-33

3 Project Generator

3-34

Configuration Parameters: multilinksumdiff/Configuration (Active) x|
Select: Jation and code generatior [=]
- Salver ¥ Block reduction I¥ Conditional input branch execution
Data Import/Export
Opt on [Implement logic signals as boolean data {vs. double) ¥ signal storage reuse
[=-Diagno:
£“Sample Time ™ Inline parameters Configure ...
+~Data Validity
i tion life: d: 1
i Type Conversion Gz EmiEEn(dam) I
i Connectivity)
" Compatiiity —Code generatior
+~-Model Referencing = -
! saving Parameter structure: [NorHierarchical =
Hardware Implementation — Signals
Model Referencing
El-Simulation Target [Enable local block outputs [Reuse block outputs
t o L-Symbals
! ECustom Code I~ Ianore integer downcastsin folded expressions [~ Tnline invariant signals
El-Real-Time Workshop [Eliminate superfiucus local variables (Expression folding)
i-Report
L. Comments I™ Use global buffers to reduce local variables
-Symbols Loop unralling threshold: |5
i--Custom Code
iDebug [¥ Use memepy for vector assignment Memcpy threshold (bytes): [6%
H Py i Py V!
tInterface
iCode Style .
t-Templates
{Data Placement I~ Remove root level 1/0 zero initialization I Use memset to initialize floats and doubles to 0.0
iData Type Replacement =
--Memory Sections I~ Remove internal data zero initialization [+ Optimize initialization code for model reference
i-Embedded IDE Link MU
r—Integer and fixed-point
I~ Remove code from floating-point to integer conversions that wraps out-of-range values
I~ Remove code from floating-point to integer conversions with saturation that maps Nal to zero -
J- oK I Cancel | Help | Apply I

These options are typically selected for Real-Time Workshop software to
provide optimized code generation for common code operations:

Parameter

Description

Conditional input branch
execution

Improve model execution when the
model contains Switch and Multiport
Switch blocks.

Signal storage reuse

Reuse signal memory.

Enable local block outputs

Specify whether block signals are
declared locally

Reuse block outputs

Specify whether Real-Time
Workshop reuses signal memory.

Eliminate superfluous local
variables (Expression folding)

Collapse block computations into
single expressions.

Setting Real-Time Workshop® Category Options

Parameter

Description

Loop unrolling threshold

Specify the minimum signal or
parameter width that generates a
for loop.

Optimize initialization code for
model reference

Specify whether to generate
initialization code for blocks that
have states.

For more information about using these and the other Optimization options,
refer to the Real-Time Workshop documentation.

Embedded IDE Link MU Pane Options
On the select tree, the Embedded IDE Link MU pane provides options in

these areas:

Parameter

Description

Runtime Options

Set options for run-time operations,
like the build action and whether
to use processor-in-the-loop
functionality.

Project Options

Set the build options for your project
code generation, including compiler
and linker settings.

Code Generation

Configure your code generation
needs, such as enabling real-time
task execution profiling.

Link Automation

Specify whether to export the
ghsmulti object to the MATLAB
workspace.

Runtime Options

Before you run your model as an executable on any Green Hills Software
processor, configure the run-time options for the model.

3-35

3 Project Generator

3-36

By selecting values for the options available, you configure the model build
process and task or process overrun handling.

Build action

To specify to Real-Time Workshop what to do when you click Build, select
one of the following options. The actions are cumulative—each listed action
adds features to the previous action on the list and includes all the previous

features:

Build Action Selection

Description

Create_project

Directs Real-Time Workshop
software to start Green Hills
MULTI software and populate
a new project with the files
from the build process. This
option offers a convenient
way to build projects in Green
Hills MULTI IDE.Real-Time
Workshop software generates
C code only from the model. It
does not use the Green Hills
Software development tools,
such as the compiler and linker.
Also, MATLAB software does
not create the ghsmulti object
for accessing the Green Hills
MULTTI software that results
from the other options.

Archive_library

Directs Real-Time Workshop
software to archive the project
for this model. Use this option
when you plan to use the model
in a model reference application.
Model reference requires that
you archive your Green Hills
MULTTI projects for models that
you use in model referencing.

Setting Real-Time Workshop® Category Options

Build Action Selection Description

Build Builds the processor-specific
executable file, but does not
download the file to your
processor.

Create_processor_in_the_loop_projectDirects the Real-Time Workshop
software code generation process
to create PIL algorithm object
code as part of the project build.

Build_and_execute Directs Real-Time Workshop
software to build, download, and
run your generated code as an
executable on your processor.

Your selection for Build action determines what happens when you click
Build or press Ctrl+B. Your selection tells Real-Time Workshop when to stop
the code generation and build process.

To run your model on the processor, select the default build action,
Build_and_execute. Real-Time Workshop then automatically downloads
and runs the model on your processor.

Note When you build and execute a model on your processor, the Real-Time
Workshop software build process resets the processor automatically.

Interrupt overrun notification method

To enable the overrun indicator, choose one of three ways for the processor
to respond to an overrun condition in your model:

3-37

3 Project Generator

3-38

None

Ignore overruns encountered while
running the model.

Print_message

When the processor encounters

an overrun condition, it prints a
message to the standard output
device, stdout.

Call_custom_function

Respond to overrun conditions by
calling the custom function you
identify in Interrupt overrun
notification function.

Interrupt overrun notification function

When you select Call custom_function from the Interrupt overrun
notification method list, you enable this option. Enter the name of the
function the processor uses to notify you that an overrun condition occurred.
The function must exist in your code on the processor.

PIL block action

Selecting Create_Processor_In_the Loop_project for the Build action
enables PIL block action. Choose one of the following three actions for

creating a PIL block:

PIL Block Action Selection

Description

None

Do not create the PIL block or PIL
algorithm object code.

Create PIL block

Create the algorithm object code
and PIL block. Use this selection to
create a PIL block.

Create PIL
block _build_and_download

Create the algorithm object code
and PIL block, and then build
and download the project to your
processor. Use this selection to
update an existing PIL block in a
model.

Setting Real-Time Workshop® Category Options

Project Options

Before you run your model as an executable on any processor, configure the
Project options for the model. By default, the setting for the project options is
Custom, which applies MathWorks specified compiler and linker settings for
your generated code.

Compiler options string

To determine the degree of optimization provided by the Green Hills
optimizing compiler, enter the optimization level to apply to files in your
project. For details about the compiler options, refer to your Green Hills
MULTI documentation. When you create new projects, Embedded IDE Link
MU software sets the optimization to -g.

System stack size (MAUs)

Enter the amount of memory to use for the stack. For more information on
memory needs, refer to Enable local block outputs on the Optimization
pane of the dialog box. The block output buffers are placed on the stack until
the stack memory is fully allocated. When the stack memory is full, the
output buffers go in global memory. Refer to the online Help system for more
information about Real-Time Workshop options for configuring and building
models and generating code.

Code Generation

From this category, you select options that define the way your code is
generated:

Parameter Description

Profile real-time task execution | Enable real-time task execution
profiling in your project.

Inline run-time library functions | Specify whether to inline each Signal
Processing Blockset™ and Video
and Image Processing Blockset™
function.

To enable the real-time execution profile capability, select Profile real-time
task execution. When you select this option, the build process instruments

3-39

3 Project Generator

3-40

Configuration Parameters: multilinksumdiff{ Configuration (Active) LI
Select: —Runtime Options Al
- Solver)) -
Data Import/Export Build action: IBulId_and_execute LI
Optimization Interrupt overrun notification method: INone vl
[-]-Diagnostics
+Sample Time Maximum time allowed to build projects (s): I 1000
Data Validity
Type Conversion _ Project Options

Model Referencing
Saving

-~Hardware Implementation
-~Model Referencing
[=-Simulation Target

[=-Real-Time Workshop
--Repaort

-~ Comments

- Symbals

-~ Custom Code
--Debug

- Interface

- Code Style

- Templates
--Data Placement
--Data Type Replacement
- Memory Sections
gs-mbedded IDE Link MU

your code to provide performance profiling at the task level. When you run
your code, the executed code reports the profiling information in graphical
presentation and an HTML report forms.

To specify whether the functions generated from blocks in your model are used
inline or by pointers, select Inline run-time library functions. Selecting
this option tells the compiler to inline each Signal Processing Blockset

and Video and Image Processing Blockset function. Using inline functions
optimizes your code to run more efficiently. However, such optimization
requires more memory.

As shown in the following figure, the default setting uses inlining to optimize
your generated code.

Compiler options string: I

System stack size (MAUS): I 512
System heap size (MAUs): I 512

—Code Generation

[~ Profile real-time execution

¥ Inline run-time library functions

—Link A ion

Maximum time allowed to complete MULTT operations (s): I 10

V¥ Export MULTI link handle to base workspace

MULTI link handle name: IIDE_Obj

oK I Cancel Help Apply |

Setting Real-Time Workshop® Category Options

When you designate a block function as inline, the compiler replaces each call
to a block function with the equivalent function code from the static run-time
library. If your model uses the same block four times, your generated code
contains four copies of the function.

While this redundancy uses more memory, inline functions run more quickly
than calls to the functions outside the generated code.

Link Automation

When you use Real-Time Workshop software to build a model to a processor,
Embedded IDE Link MU software makes a connection between MATLAB and
Green Hills MULTI. MATLAB represents that connection as a ghsmulti
object. The properties of the ghsmulti object contain information about the
IDE instance it refers to, such as the session and processor it accesses. In this
pane, the Export MULTI link handle to base workspace option instructs
the software to export the ghsmulti object created during code generation to
your MATLAB workspace. MATLAB exports the object with the name you
specify in MULTI link handle name.

Overrun Indicator and Software-Based Timer

Embedded IDE Link MU software includes software that generates interrupts
in models that use multiple clock rates. In the following cases, the overrun
indicator does not work:

¢ In multirate systems where the rate in the model is not the same as the
base clock rate for your model. In such cases, the timer in Embedded IDE
Link MU provides the interrupts for setting the model rate.

® In models that do not include ADC or DAC blocks. In such cases, the timer
provides the software interrupts that drive model processing.

3-41

3 Project Generator

Model Reference and Embedded IDE Link MU Software

In this section...

“About Model Reference” on page 3-42
“How Model Reference Works” on page 3-42

“Using Model Reference with Embedded IDE Link MU Software” on page
3-44

“Configuring Targets to Use Model Reference” on page 3-45

About Model Reference

Model reference lets your model include other models as modular components.
This technique is useful because it provides the following capabilities:

¢ Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

® Lets you generate code once for all the modules in the entire model and
then only regenerate code for modules that change.

® Lets you develop the modules independently.

¢ Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works

Model reference behaves differently in simulation and in code generation.
This discussion uses the following terms:

® The Top model is the root model block or model. It refers to other blocks or
models. In the model hierarchy, this model is the topmost model.

3-42

Model Reference and Embedded IDE Link™ MU Software

® Referenced models are blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

Model Reference in Simulation

When you simulate the top model, Real-Time Workshop detects that your
model contains referenced models. Simulink generates code for the referenced
models and uses the generated code to build shared library files for updating
the model diagram and simulation. It also creates an executable (.mex file) for
each reference model that is used to simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink rebuilds the model reference files. Whether reference

files or models are rebuilt depends on whether and how you change the models
and on the Rebuild options settings. You can access these settings through

the Model Reference pane of the Configuration Parameters dialog box.

Model Reference in Code Generation

Real-Time Workshop requires executables to generate code from models. If
you have not simulated your model at least once, Real-Time Workshop creates
a .mex file for simulation.

Next, for each referenced model, the code generation process calls make rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Real-Time Workshop calls make rtw
on the top model. The call to make_rtw links to the library files Real-Time
Workshop created for the associated referenced models.

3-43

3 Project Generator

3-44

Using Model Reference with Embedded IDE Link MU
Software

With few limitations or restrictions, Embedded IDE Link MU software
provides full support for generating code from models that use model
reference.

Build Action Setting

The most important requirement for using model reference with the Green
Hills MULTI software supported processors is you must set the Build action
(select Configuration Parameters > Embedded IDE Link MU) for all
models referred to in the simulation to Archive library.

To set the build action, perform the following steps:

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.
The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded IDE Link MU.

4 In the right pane, under Runtime, select set Archive library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive library, the build process automatically changes the build
action to Archive library and issues a warning about the change.

Selecting Archive library disables the Interrupt overrun notification
method, Export MULTI link handle to the base workspace, and
System stack size options for the referenced models.

Target Preferences Blocks in Reference Models

Each referenced model and the top model must include a Target Preferences
block for the correct processor. Configure all the Target Preferences blocks
for the same processor.

Model Reference and Embedded IDE Link™ MU Software

The referenced models need target preferences blocks to provide information
about which compiler and which archiver to use. Without these blocks, the
compile and archive processes do not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations

Model reference with Embedded IDE Link MU software code generation
options does not allow you to use noninlined S-functions in reference models.
Verify that the blocks in your model do not use noninlined S-functions.

Configuring Targets to Use Model Reference

When you create models to use in Model Referencing, keep in mind the
following considerations:

® Your model must use a system target file derived from the ERT or GRT
target files.

® When you generate code from a model that references other models,
configure the top-level model and the referenced models for the same
system target file.

¢ Real-Time Workshop builds and Embedded IDE Link MU software projects
do not support external mode in model reference. If you select the external
mode option, it is ignored during code generation.

® Your TMF must support use of the shared utilities directory, as described
in Supporting Shared Utility Directories in the Build Process in the
Real-Time Workshop documentation.

To use an existing processor, or a new processor, with Model Reference, set
the ModelReferenceCompliant flag for the processor. For information about
setting this option, refer to ModelReferenceCompliant in the online Help
system.

3-45

3 Project Generator

3-46

If you start with a model that was created before MATLAB release R14SP3,
use the following command to make your model compatible with model
reference :

% Set the Model Reference Compliant flag to on.
set_param(bdroot, 'ModelReferenceCompliant','on')

Code that you generate from Simulink models by using Embedded IDE Link
MU software includes the model reference capability. You do not need to
set the flag.

Verification

® “What Is Verification?” on page 4-2
e “Using Processor-in-the-Loop” on page 4-3

e “Real-Time Execution Profiling” on page 4-13

4 verification

4-2

What Is Verification?

Verification consists broadly of running generated code on a processor and
verifying that the code does what you intend. The components of Embedded
IDE Link MU software combine to provide tools that help you verify your
code during development by letting you run portions of simulations on your
hardware and profiling the executing code.

Using the Automation Interface and Project Generator components,
Embedded IDE Link MU software offers the following verification functions:

® Processor-in-the-Loop — A technique to help you evaluate how your process
runs on your processor

¢ Real-Time Task Execution Profiling — A tool that lets you see how the
tasks in your process run in real-time on your hardware

Using Processor-inthe-Loop

Using Processor-in-the-Loop

In this section...

“Processor-in-the-Loop Overview” on page 4-3
“PIL Block” on page 4-6
“PIL Issues” on page 4-6
“Creating and Using PIL Blocks” on page 4-10

Processor-in-the-Loop Overview

Processor-in-the-loop (PIL) operation provides a powerful verification
capability in your development process. Processor-in-the-loop (PIL)
cosimulation is a technique designed to help you evaluate how well a
candidate algorithm, such as a control system, operates on the actual
processor selected for the application.

Cosimulation reflects a division of labor in which Simulink models the plant,
while code generated from the controller subsystem runs on the processor
hardware.

During the Real-Time Workshop Embedded Coder code generation process,
you can create a PIL block from one of several Simulink components including
a model, a subsystem in a model, or subsystem in a library. You then place the
generated PIL block inside a Simulink model that serves as the test harness
and run tests to evaluate the processor-specific code execution behavior.

Why Use Cosimulation?

PIL cosimulation is particularly useful for simulating, testing, and validating
a controller algorithm in a system comprising a plant and a controller. In a
classic closed-loop simulation, Simulink and Stateflow® model such a system
as two subsystems with the signals transmitted between them, as shown in
the following block diagram:

4 verification

4-4

In1 Out] — P Inl Out 1

S TP 1 Jf S 1 R 1 S—

In? Ot p— JIn Outl

Flant Cantraller

Your starting point in developing a combined plant and controller system
model 1s to model the combined system as two subsystems in closed-loop
simulation. As your design progresses, you can use Simulink external mode
with standard Real-Time Workshop targets (such as GRT or ERT) to help you
model the controller system separately from the plant.

However, these simulation techniques do not help you account for restrictions
and requirements imposed by the hardware, such as limited memory
resources, or behavior of processor-specific optimized code. When you reach
the stage of deploying controller code on the processor hardware, you may
need to make extensive adjustments to the controller system to account for the
hardware specifics. After you make these adjustments, your deployed system
may have diverged significantly from your original model. Such discrepancies
can create difficulties if you need to change the original model.

PIL cosimulation addresses these issues by providing an intermediate stage
between simulation and deployment. In a PIL cosimulation, the processor

participates fully in the simulation loop—hence the term processor-in-the-loop.

Two new terms appear in the following sections

Using Processor-inthe-Loop

¢ PIL Algorithm — The algorithmic code, such as the control algorithm, to
test during the PIL cosimulation. The PIL algorithm resides in compiled
object form to allow verification at the object level.

e PIL Application — The executable application to run on the processor.
The PIL application is created by linking the PIL algorithm object code
with wrapper code or a test harness that provides an execution framework
that interfaces to the PIL algorithm.

The wrapper code includes the string.h header file so that the memcpy
function 1s available to the PIL application. The PIL application uses
memcpy to facilitate data exchange between Simulink and the cosimulation
processor.

Note Whether the PIL algorithm code under test uses string.h is
independent of the use of string.h by the wrapper code, and is entirely
dependent on the implementation of the algorithm in the generated code.

How Cosimulation Works

In a PIL cosimulation, Real-Time Workshop software generates an executable
application for the PIL algorithm. This code runs (in simulated time) on a
processor platform. The plant model remains in Simulink without the use of
code generation.

During PIL cosimulation, Simulink simulates the plant model for one sample
interval and exports the output signals (outn of the plant) to the processor
platform via Green Hills MULTI. When the processor platform receives
signals from the plant model, it executes the PIL algorithm for one sample
step. The PIL algorithm returns its output signals (ontn of the algorithm)
computed during this step to Simulink in inn, via the Green Hills MULTI
interface. At this point, one sample cycle of the simulation is complete and
the plant model proceeds to the next sample interval. The process repeats
and the simulation progresses.

PIL tests do not run in real time. After each sample period, the simulation
halts to ensure that all data has been exchanged between the Simulink test
harness and object code. You can then check functional differences between
the model and generated code.

4-5

4 verification

4-6

PIL Block

The PIL cosimulation block is the Simulink block interface to PIL and the
interface between the Simulink plant model and the executable application
running on the processor. The Simulink inputs and outputs of the PIL
cosimulation block are configured to match the input and output specification
of the PIL algorithm.

The block is a basic building block that enables you to perform these
operations:

® Select a PIL algorithm

¢ Build and download a PIL application

® Run a PIL simulation

The PIL block inherits the shape and signal names from the parent
subsystem, like those in the following example. This inheritance feature is

convenient for copying the PIL block into the model to replace the original
subsystem for cosimulation.

In
FiL Outl |

InZ

PIL Bladk

PIL Issues

® “Data Types Must Be the Same Size in MATLAB and on the Processor”
on page 4-7

® “Buses and MUX Signals Not Supported at PIL Component Boundary”
on page 4-8

Using Processor-inthe-Loop

e “Signals with Custom Storage Classes Not Supported at PIL Component
Boundary” on page 4-8

® “Continuous Sample Times Not Supported” on page 4-8

e “Real-Time Workshop grt.tlc-Based Targets Not Supported” on page 4-8
e “Using Breakpoints and PIL” on page 4-8

¢ “Using TimeMachine and PIL” on page 4-9

Consider the following issues when you work with PIL blocks.

Data Types Must Be the Same Size in MATLAB and on the
Processor

Only data types with the same size on the host and processor are supported at
the PIL I/O boundary.

The data types used at the PIL I/O boundary are restricted based on the
following rule: PIL supports the data type only if the data type size in
MATLAB is the same as the data type size on the processor.

® For Boolean, uint8, and int8, the size is 8 bits on the processor and in
MATLAB.

® For uint16 and int16, the size is 16 bits on the processor and in MATLAB.

® For uint32 and int32, the size is 32 bits on the processor and in MATLAB.

® For single, the size is 32 bits on the processor and in MATLAB.

For double, the size is 64 bits on the processor and in MATLAB.
Examples of unsupported data types:

¢ On the DSP563xx — single and double are not supported (floating point
types are 24 bits on the processor)

® On the 8051 — double is not supported (double is 32 bits, the same as
single)

To avoid data type problems, do not use the example data types in your
model because the data type on the processor does not match the built-in
MATLAB data type.

4 verification

Buses and MUX Signals Not Supported at PIL Component
Boundary
Buses and MUX Signals are not supported at the PIL component boundary.

There is no resolution for this issue.

Signals with Custom Storage Classes Not Supported at PIL
Component Boundary

Signals with Custom Storage Classes are not supported at the PIL component
boundary.

There is no resolution for this issue.

PIL does support the standard storage classes, such as ExportedGlobal.

Continuous Sample Times Not Supported

Continuous sample times are not supported by PIL. If you encounter this
you see the following error:

??? Processor-in-the-Loop (PIL) does not support continuous
time. Please uncheck "continuous time" in the RTW Interface
configuration set options or disable PIL.

You must use discrete sample times in your model configuration parameters
when you use PIL.

Real-Time Workshop grt.tlc-Based Targets Not Supported
Real-Time Workshop grt.tlc-based targets are not supported for PIL.

To use PIL, select the Real-Time Workshop multilink.ert target provided
by Real-Time Workshop Embedded Coder.

Using Breakpoints and PIL

Green Hills MULTI debugger allows you to add breakpoints to your projects.
When you run a PIL simulation that includes added breakpoints, the
following dialog box appears:

Using Processor-inthe-Loop

-} Embedded IDE Link{tm) MU: PIL ! Ol =]

PIL Cosimulation has hit a user breakpoint.

Simulink is waiting for you to finish debugging in MULTI debugger.

To continue simulation, remaove the user breakpoint and click "Go on Selected items (F5)" in MULTI debugger
To stop simulation. close this dialog box.

The dialog box gives you two options:

¢ Stop the running simulation by closing the dialog box.

¢ Go to MULTI, remove the breakpoint you added, and press F5 to continue
running your simulation.

When you use MULTI to add breakpoints to the generated PIL code, the PIL
simulation doesn’t know how to use the debug points. If you use the add
function to add a breakpoint, you do not encounter the dialog box shown.

Using TimeMachine and PIL

MULTI IDE provides a debugging suite called TimeMachine™. The software
provides controls that allow you to step forward and backward through
paused code.

If you stop a running PIL program at a breakpoint, and then use the
TimeMachine debugging features, you must restore the program pointer to
the breakpoint before you restart the program. If you do not restore the
pointer location, MATLAB returns an error message and PIL stops working.

Note Do not remove the data breakpoint the PIL build process inserts. You
can remove any breakpoint that you insert in the code.

To use TimeMachine for debugging without problems, follow these steps:

1 Generate your PIL block.

4 verification

4-10

2 Generate program code from the model that contains the PIL block.
3 Download the program to your processor.

4 From MATLAB or in the IDE, insert one or more breakpoints in the
program. For more information about adding breakpoints from MATLAB,
refer to add in the online Help system.

5 Run the program. The program stops at a breakpoint. Note the line
number or breakpoint where the program stopped. You will return the
program pointer to this location when you finish your debugging session.

6 Use TimeMachine controls to step the program pointer forward or
backward in your program to debug as needed.

7 When you finish debugging, use TimeMachine controls to return the
program pointer to the line or breakpoint where the program stopped in
step 5.

8 Restart your program.

Repeat steps 5 through 9 until you finish debugging your program.

Creating and Using PIL Blocks

Using PIL and PIL blocks to verify your processes begins with a Simulink
model of your process. To see an example of one such model used to implement
PIL, refer to the demo Comparing Simulation and Processor Implementation
with Processor-in-the Loop (PIL) (multilinkpilsumdiff.mdl) in the Getting
Started with Application Development demo for Embedded IDE Link MU.

Note Models can have multiple PIL blocks for different subsystems. You
cannot have more than one PIL block for the same subsystem. Including
multiple PIL blocks for the same subsystem causes errors and incorrect
results.

Using Processor-inthe-Loop

To create and use a PIL block

Perform the following tasks to create a new PIL block and use the block in
a model:

a4

Develop the model of the process to simulate.

Use Simulink to build a model of the process to simulate. The blocks in
the library multilinklib can help you set up the timing and scheduling
for your model.

For information about building Simulink models, refer to Simulink Getting
Started Guide in the online Help system.

Convert your process to a masked subsystem in your model.

For information about how to convert your process to a subsystem, refer to
Creating Subsystems in Using Simulink or in the online Help system.

Open the new masked subsystem and add a Target Preferences block to
the subsystem.

The block library multilinklib contains the Target Preferences block
to add to your system. Configure the Target Preferences block for your
processor. For details about the options on the Target Preferences block,
refer to the Target Preferences block reference in the online Help system.

Configure your model to enable it to generate PIL algorithm code and a PIL
block from your subsystem.

a From the model menu bar, go to Simulation > Configuration
Parameters in your model to open the Configuration Parameters dialog
box.

b Choose Real-Time Workshop from the Select tree. Set the
configuration parameters for your model as required by the software.
Get more information about setting the Real-Time Workshop parameters
in Setting Real-Time Workshop Options for supported hardware in the
online Help system.

¢ Under Target selection, set the System target file to
multilink ert.tlc (PIL requires Real-Time Workshop Embedded
Coder).

4-11

4 verification

4-12

5 Configure the model to perform PIL building and PIL block creation.

a Select Embedded IDE Link MU on the Select tree.

b From the Build Action list, select
Create_processor_in the loop_project to enable PIL block creation
and cosimulation.

¢ From the PIL block action list, select Create PIL block.
d Click OK to close the Configuration Parameters dialog box.

6 To create the PIL block, right-click the masked subsystem in your model

and select Real-Time Workshop > Build Subsystem from the context
menu.

This step builds the PIL algorithm object code and a PIL block that
corresponds to the subsystem, with the same inputs and outputs. Follow
the progress of the build process in the MATLAB command window.

A new model window opens and the new PIL block appears in it.

7 Copy the new PIL block from the new model to your model, either in

parallel to your masked subsystem to cosimulate the processes, or replace
your subsystem with the PIL block.

To see the PIL block used in parallel to a masked subsystem, refer to the
demo Getting Started with Application Development in the demos for
Embedded IDE Link MU.

8 Click Simulation > Start to run the PIL simulation and view the results.

Real-Time Execution Profiling

Real-Time Execution Profiling

In this section...

“Overview” on page 4-13
“Profiling Execution by Tasks” on page 4-14
“Profiling Execution By Subsystems” on page 4-16

Overview

Real-time execution profiling in Embedded IDE Link MU software uses a set
of utilities to support profiling for synchronous and asynchronous tasks, or
atomic subsystems, in your generated code. These utilities record, upload, and
analyze the execution profile data.

Note The software does not support profiling on NEC V850 and Freescale
MPC7400 processors.

Execution profiler supports profiling your code two ways:

¢ Tasks—Profile your project according to the tasks in the code.

® Atomic subsystems—Profile your project according to the atomic
subsystems in your model.

Note To perform execution profiling, you must generate your project from
a model in Simulink modeling environment and you must select the system
target file multilink_ert.tlc in the model configuration parameters.

When you enable profiling, you select whether to profile by task or subsystem.
To profile by subsystems, you must configure your model with at least one

atomic subsystem. To learn more about creating atomic subsystems, refer to
“Creating Subsystems” in the online help for Simulink software.

4-13

4 verification

4-14

The profiler generates output in the following formats:

e Graphical display that shows task or subsystem activation, preemption,
resumption, and completion. All data appears in a MATLAB graphic with
the data notated by model rates or subsystems and execution time.

e An HTML report that provides statistical data about the execution of each
task or atomic subsystem in the running process.

These reports are identical to the reports you see if you use
profile(ghsmulti obj, 'execution', 'report) to view the execution
results. For more information about report formats, refer to profile. In
combination, the reports provide a detailed analysis of how your code runs

on the processor.
Use this general process for profiling your project:

1 Create your model in Simulink modeling environment.

2 Enable execution profiling in the configuration parameters for your model.
3 Run your application.

4 Stop your application.

5 Get the profiling results with the profile function.

The following sections describe profiling your projects in more detail.

Profiling Execution by Tasks
To configure a model to use task execution profiling, perform the following

steps:
1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link MU from the Select tree. The pane appears as
shown in the following figure.

Real-Time Execution Profiling

Configuration Parameters: multilinksumdiff{ Configuration (Active) LI
Select: —Runtime Options 2
- Solver ’) -
. Data Import/Export Build action: IBulId_and_execute LI
Rt Interrupt overrun notification method: INone VI
[-]-Diagnostics
i Sample Time Maximum time allowed to build projects (s): I 1000
Data Validity
Type Col.wersmn e Dplons
Connectivity
Compatibility Compiler options string: I
Model Referencing
Saving System stack size (MAUs): I 512
-~Hardware Implementation
-~Model Referencing System heap size (MAUs): I 512
[=-Simulation Target
: —Code Generation
El-Real-Time Workshop [~ Profile real-time execution
Report ¥ Inline run-time library functions
-~ Comments
- Symbals Link A on
-~ Custom Code
~Debug Maximum time allowed to complete MULTT operations (s): I 10
- Interface
- Code Style V¥ Export MULTI link handle to base workspace
- Templates _ -
.-Diata Placement MULTI link handle name: IIDE_ObJ
--Data Type Replacement s
- Memory Sections
-mbedded IDE Link MU
=
J- oK I Cancel | Help | Apply |

3 Select Profile real-time execution. The Profile by list appears.
4 On the Profile by list, select Task to enable real-time task profiling.

5 Select Export IDE link handle to base workspace, and assign a name
for the handle in MULTI link handle name.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

4-15

4 verification

2 To stop the running program, select Debug > Halt in MULTI IDE or
use halt(objectname) from the MATLAB command prompt. Gathering
profiling data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for information about other reporting options.

The following figure shows the profiling plot from running an application
that has three rates—the base rate and two slower rates. The gaps in the
Sub-Rate2 task bars indicate preempted operations.

=0l

ISes);top Window Help
WM& b|aaasE|0E a0

Plot of recorded profiling data over 1.9552 seconds

Basze-Rate

0 02 04 0B 08 1 12 14 18 18 2
Time in seconds

Refer to .

Profiling Execution By Subsystems

When your models use atomic subsystems, you have the option of profiling
your code based on the subsystems along with the tasks.

4-16

Real-Time Execution Profiling

To configure a model to use subsystem execution profiling, perform the
following steps:

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link MU from the Select tree. The pane appears as
shown in the following figure.

Configuration Parameters: multilinksumdiff/ Configuration (Active) il
Select: —Runtime Options 2
- Solver .) :
. Data Import/Export Build action: IBulId_and_execute LI
-~ Optimization Interrupt overrun notification method: INone VI
[-]-Diagnostics
r~5ample Time Maximum time allowed to build projects (s): I 1000
Data Validity
Type Conversion —Project Options
Connectivity
Compatibility Compiler options string: |
Model Referencing
Saving System stack size (MAUS): I 512
-~Hardware Implementation
- Model Referencng System heap size (MAUs): I 512
—Code Generation
El-Real-Time Waorkshop [~ Profile real-time execution
Report ¥ Inline run-time library functions
- Comments
- Symbals Link A on
-~ Custom Code
~Debug Maximum time allowed to complete MULTT operations (s): I 10
- Interface
- Code Style ¥ Esxport MULTT link handle to base workspace
- Templates _ -
-Data Placement MULTI link handle name: IIDE_ObJ
-Data Type Replacement e
- Memory Sections
S-mbedded IDE Link MU
=]
J- oK Cancel Help Apply |

3 Select Profile real-time execution.

4 On the Profile by list, select Atomic subsystem to enable real-time
subsystem execution profiling.

4-17

4 verification

4-18

5 Select Export IDE link handle to base workspace and assign a name
for the handle in IDE link handle name.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

2 To stop the running program, select Debug > Halt in MULTI IDE, or use
halt(objectname) from the MATLAB command prompt. Gathering profile
data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter:

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for more information.

The following figure shows the profiling plot from running an application that
has three subsystems—For Iterator Subsystem, For Iterator Subsystem1, and
Idle Task Subsystem.

Real-Time Execution Profiling

Plot of recorded profiling data over 0.016999 seconds

mProfile_AtomicSubsys/For Iterator Subsystem

mProﬁle_AtomiCSUbSySlFOr |terator Subsystem ...

mProfile_AtomicSubsys/ldle Task Subsystem lIIIIIIII

0.005 0.01 0.015 0.02
Time in seconds

The following figure presents the model that contains the subsystems reported
in the profiling plot.

4-19

4

Verification

4-20

Constant

Atomic Subsystem Profiling

0.8 |«

Feedback Gain

|

out1 for{..} In1

For Iterator
Subsystem1

[[
Rate Transition

)

L 4;_‘7
I [
Rate Transition 1

Idle Task

f0

P»in1 for{..} out1

|

To Workspace

simout

For Iterator
Subsystem

Gain

[[m
Rate Transition 2

il
[[m
Rate Transition 3

Idle Taskl

Atomic Subsystem Profiling Report.

v

function ()

IdleTask
Subsystem

file://file://T:/Adoc/matlab/doc/src/toolbox/idelinkmu/ug/sample_subsystem_profiling_report.html

Function Reference

Constructor (p. 5-2) Lists the functions and methods
available by functional groups

File and Project Operations (p. 5-3)
Processor Operations (p. 5-4)
Debug Operations (p. 5-5)

Data Manipulation (p. 5-6)

Status Operations (p. 5-7)

5 Function Reference

Constructor

ghsmulti Object to communicate with Green
Hills MULTI IDE

5-2

File and Project Operations

File and Project Operations

activate
add
build

cd

close
connect

dir

getbuildopt
ghsmulticonfig
info

list

new

open

remove

setbuildopt

Make specified project active

Add file or data type to active project
Build or rebuild current project

Set IDE working directory

Close file in IDE window

Connect IDE to processor

Files and directories in current IDE
window

Configure Green Hills MULTI
Information about processor

Information listings from MULTI
IDE

New text, project, or configuration
file

Open specified file

Remove file from active project in
IDE window

Set active configuration build options

5 Function Reference

5-4

Processor Operations

halt
load
profile

reset

restart

run

Halt program execution by processor
Load file into processor
Real-time execution report

Stop program execution and reset
processor

Restart in IDE

Execute program loaded on processor

Debug Operations

Debug Operations

delete Remove breakpoint

insert Insert breakpoint in file

5-5

5 Function Reference

Data Manipulation

address

read
regread

regwrite

write

5-6

Return address and memory type of
specified symbol

Read data from processor memory
Values from processor registers

Write data values to registers on
processor

Write data to processor memory
block

Status Operations

Status Operations

isrunning Determine whether processor is
executing process
visible Visibility of IDE window

5 Function Reference

Functions — Alphabetical
List

activate

Purpose
Syntax

Description

See Also

Make specified project active
activate(id, 'my_project.gpj')

activate(id, 'my_project.gpj') uses handle id to activate the
project named my_project.gpj in the IDE. If my_project.gpj does
not exist in the IDE, MATLAB issues an error that explains that the
specified project does not exist.

MULTT allows you to have two or more projects with the same

name open at the same time, such as c:\try11\try11.gpj and
c:\try12\try11.gpj. If you use the following function to activate the
project try11.gpj at the command prompt, where you do not provide
the full path to the project:

activate(id,'tryt11.gpj")

the software cannot tell which project named try11.gpj to activate and
may not activate the correct one. The following steps describe how the
software decides which project to activate.

1 Search the current Green Hills MULTI IDE directory to find the
first project with the specified name. If the search finds the project,
Embedded IDE Link MU activates the project and returns.

2 If the specified project is not found in the IDE, search the MATLAB
path to find a project with this name. If the search finds the project,
Embedded IDE Link MU activates the project and returns.

3 If the search cannot find a project with the specified name in the
Green Hills MULTI IDE or on the MATLAB path, the software
returns an error saying it could not find the specified project.

new

remove

add

Purpose
Syntax

Description

See Also

Add file or data type to active project
add(id, 'my_file'")

add(id, 'my_file') adds the file my_file to the active project from
the current MATLAB working directory. If you do not have an active
project in the IDE, MATLAB returns an error message and does not add
the file. You can specify the file by name, if the file is in your MATLAB
or Embedded IDE Link MU working directory, or provide the fully
qualified path to the file when the file is not in your working directories.

To add a file add. txt that is in your MATLAB working directory to the
IDE, use the following command:

add(id, 'add.txt"');
where id is the handle for your multilink object. If the file add. txt is

not in either working directory, the command changes to include the
full path to the file:

add (id, 'fullpathtofile\add.txt');

You can add files of all types that the IDE supports. The following table
shows the supported file types.

Support File Type File Extension

C/C++ source files *.cpp, *.C, *.cxx, *.h,
*.hpp, *.hxx

Assembly source files *.asm, *.dsp

Object and Library files *.doj, *.dlb

Linker Command files * . 1df

Green Hills MULTI support file *.vdk

activate

cd

6-3

add

open

remove

address

Purpose

Syntax

Description

Example

Return address and memory type of specified symbol

a=address(id, 'symbolstring')
a=address(id, 'symbolstring', 'scope')

a=address(id, 'symbolstring') returns the address and memory type
values for the symbol identified by symbolstring. address returns
the variable in the current (or local) scope. For address to work,
symbolstring must be a symbol in the symbol table for your active
project. There must be a linker command file (1¢f) in your project. If
address does not find the specified symbol, a is empty and MATLAB
software returns a warning message. You can use address only after
you load the program file.

a is a two-element array composed of the symbol address offset and
page—a(1) is the address offset and a(2) is the page. read and write
accept a as address inputs.

a=address(id, 'symbolstring', 'scope') adds the input argument
scope that tells the address method whether the symbol is local or
global. Scope accepts one of the following strings:

string Description

global Indicates that symbolstring
represents a global variable

local Indicates that symbolstring
represents a local variable

Use local when the current program scope is the desired scope of the
function.

Use address to return the address and page of an array named coef.

a=address(id, 'coef')

6-5

address

See Also

You can use address as input for read and write. This example uses
read to access the first five elements of the array stored at the address
of the global variable coef. Use write in a similar way.

coefvalues=read(id,address(id, 'coef', 'global'), 'int32,5)
load

read

write

build

Purpose

Syntax

Description

See Also

Build or rebuild current project

build(id)
build(id,timeout)
build(id, 'all')
build(id, 'all',timeout)

build(id) incrementally builds the active project. Incremental builds
recompile only source files in your project that you changed or added
after the most recent build. build uses the file time stamp to determine
whether to recompile a file. After recompiling the source files, build
links the files to make a new program file.

build(id,timeout) incrementally builds the active project with a time
limit for how long MATLABwaits for the build process to complete.
timeout defines the upper limit in seconds for the period the build
routine waits for confirmation that the build process is finished. If the
build process exceeds the timeout period, control returns toMATLAB
immediately with a timeout error. Usually, build causes the processor
to initiate a restart, even if it reaches the timeout limit. The timeout
error in MATLAB indicates that confirmation was not received before
the timeout period expired. The build action continues. Generally, the
build and link process finishes successfully in spite of the timeout error.

build(id, 'all') rebuilds all the files in the active project.

build(id, 'all',timeout) rebuilds all the files in the active project
applying the timeout limit on how long MATLAB waits for the build
process to complete.

isrunning

open

cd

Purpose

Syntax

Description

See Also

Set IDE working directory

wd=cd (id)
cd(id, 'directory')

wd=cd (id) returns the current IDE working directory, where id is a
ghsmulti object that refers to the Green Hills MULTI window, or a
vector of objects.

cd(id, 'directory') sets the IDE working directory to 'directory"'.
'directory' can be a path string relative to your current working
directory, or an absolute path. The intended directory must exist. cd
does not create a new directory. Setting the IDE directory does not
affect your MATLAB working directory.

cd alters the default directory for open and load. Loading a new
workspace file also changes the working directory for the IDE.
dir

load

open

close

Purpose

Syntax

Description

Close file in IDE window

Note close(,'text') produces a warning and 'text' will not be
accepted in a future version.

close(id, 'filename', 'filetype')

close(id, 'filename', 'filetype') closes the file named 'filename'
in the active project in the id IDE window. If filename is not an open
file in the IDE, MATLAB returns a warning message. When you enter
null value [] for filename, close closes the current active file in the
IDE. filename must match exactly the name of the file to close. If you
enter all for the filename, close closes all files in the project that are
of the type specified by filetype.

Note CLOSE does not save the file before closing it and it does not
prompt you to save the file. You lose any changes you made after the
most-recent save operation. Use the save option in the IDE to ensure
that your changes are preserved before you close the file.

The parameter 'filetype' is optional, with the default value of
"text'. Allowed 'filetype' strings are 'project', 'projectgroup’,
'text', and 'workspace'. Here are some examples of close operation
commands. In these examples, id is a ghsmulti object handle to the
IDE.

close(id, 'all', 'project') — Closes all open project files
close(id, 'my.gpj','project') — Closes the open project my.gpj
close(id,[], 'project') — Closes the active open project

close(id, 'all', 'projectgroup') — Close all open project groups.

6-9

close

6-10

See Also

close(id, 'myg.dpg', 'projectgroup') — Closes the project group:
myg.dpg

close(id,[], 'projectgroup') — Closes the active project group
close(id, 'all', 'text') — Close all text files
close(id, 'text.c', 'text') — Closes the text file text.c

close(id,[], 'text') — Closes the active text file

add

open

connect

Purpose

Syntax

Description

Example

See Also

Connect IDE to processor

connect(id)
connect(id,debugconnection)
connect(...,timeout)

connect(id) connects the IDE to the processor hardware or simulator.
id is the ghsmulti object that accesses the IDE.

connect(id,debugconnection) connects the IDE to the processor
using the debug connection you specify in debugconnection. Enter
debugconnection as a string enclosed in single quotation marks. id is
the ghsmulti object that references the IDE. Refer to Examples to see
this syntax in use.

connect(...,timeout) adds the optional parameter timeout that
defines how long, in seconds, MATLAB waits for the specified connection
process to complete. If the time-out period expires before the process
returns a completion message, MATLAB generates an error and
returns. Usually the program connection process works correctly in
spite of the error message

The input argument stringdebugconnection specify the processor
to connect to with the IDE. This example connects to the
Freescale MPC5554 simulator. The debugconnection string is
simppc -fast -dec -rom_use_entry -cpu=ppc5554.

connect(id, 'simppc -fast -dec -rom_use_entry -cpu=ppc5554"')

load

run

6-11

delete

6-12

Purpose

Syntax

Description

See Also

Remove breakpoint

delete(id,addr)
delete(id, 'filename', 'linenumber"')
delete(id, 'all')

delete(id,addr) removes a breakpoint located at the memory address
addr of the processor. Provide the address input value in hexadecimal
format, such as 0x244fc, or 0x0014.

delete(id, 'filename', 'linenumber') removes the breakpoint
located at the line number 'linenumber' in the file 'filename' for
the processor.

delete(id, 'all') removes all breakpoints in the current project
source files.

insert

Purpose

Syntax

Description

See Also

Files and directories in current IDE window

dir(id)
d=dir (id)

dir(id) lists the files and directories in the IDE working directory,
where id is the object that references the IDE. id can be either a single
handle, or a vector of handles. When id is a vector, dir returns the files
and directories for each handle.

d=dir(id) returns the list of files and directories as an M-by-1 structure
in d with the following fields for each file and directory, as shown in
the following table.

Field Name Description

name Name of the file or directory.

date Date of most recent file or directory
modification.

bytes Size of the file in bytes. Directories return 0
for the number of bytes.

isdirectory 0 if this 1s a file, 1 if this is a directory.

To view the entries in d, use an index in the command at the MATLAB

prompt, as shown by the following examples.

® d(3) returns the third element in the structure.

® d(10) returns the tenth element in the structure d.

® d(4).date returns the date field value for the fourth structure
element.

cd

open

6-13

display

Purpose
Syntax

Description

See Also

6-14

Properties of ghsmulti object
display(id)
display(id) displays the properties and property values of the

ghsmulti object id.

For example, when you create id associated with localhost and port
number 4444, display(id) returns the following information in the
MATLAB command window:

display(id)

MULTI Object:

Host Name : localhost

Port Num . 4444

Default timeout : 10.00 secs

MULTI Dir : C:\ghs\multi500\v800\

get in the MATLAB Function Reference

getbuildopt

Syntax

Description

bt=getbuildopt(id)
cs=getbuildopt(id,file)

bt=getbuildopt(id) returns an array of structures in bt. Each
structure includes an entry for each defined build tool. This list of
build tools comes from the active project and active build configuration.
Included in the structure is a string that describes the command line
tool options. bt uses the following format for elements in the structures:

® pbt(n).name — Name of the build tool.

® pbt(n).optstring — Command line switches for build tool in bt (n).
cs=getbuildopt(id,file) returns a string of build options for the
source file specified by file. file must exist in the active project. The
resulting cs string comes from the active build configuration. The

type of source file (from the file extension) defines the build tool used
by the cs string.

6-15

ghsmulti

Purpose Object to communicate with Green Hills MULTI IDE

Syntax id = ghsmulti
id=ghsmulti('propertynamel’',propertyvaluel, 'propertyname2’,...
propertyvalue2, 'timeout',value)

Description id = ghsmulti returns object id that communicates with a target
processor. Before you use this command for the first time, use
ghsmulticonfig to configure your MULTI software installation
to identify the location of your MULTI software, your processor

configuration, your debug server and the host name and port number of
the Embedded IDE Link MU service.

ghsmulti creates an interface between MATLAB and Green Hills
MULTI. If this is the first time you have used ghsmulti, you must
supply the properties and property values shown in following table
as input arguments:

Property Name Description

hostname Specifies the name of the machine hosting
the Embedded IDE Link MU service. The
default host name is localhost indicating
that the service is on the local PC. Replace
localhost with the name you entered in
Host name on the Embedded IDE Link
MU Configuration dialog box.

portnum Specifies the port to connect to the
Embedded IDE Link MU service on the host
machine. The default value for portnum is
4444. Replace portnum with the number
you entered in Port number on the
Embedded IDE Link MU Configuration
dialog box.

When you invoke ghsmulti, it starts the Embedded IDE Link MU
service. If you selected the Show server status window option
on the Embedded IDE Link MU Configuration dialog box (refer to

6-16

ghsmulti

ghsmulticonfig) when you configured your MULTI installation, the
service appears in your Microsoft Windows task bar. If you clear Show
server status window, the service does not appear.

Parameters that you pass as input arguments to ghsmulti are
interpreted as object property definitions. Each property definition
consists of a property name followed by the desired property value
(often called a PV, or property name/property value, pair).

Note The output (left-hand argument) object name you provide for
ghsmulti cannot begin with an underscore, such as _id.

id=ghsmulti('hostname’', 'name', 'portnum', 'number',...) returns
a ghsmulti object id that you use to interact with a processor in the
IDE from the MATLAB command prompt. If you enter a hostname

or portnum that are not the same as the ones you provided when you
configured your MULTI installation, Embedded IDE Link MU software
returns an error that it could not connect to the specified host and port
and does not create the object.

You use the debugging methods (refer to “Debug Operations” on page
5-5 for the methods available) with this object to access memory and
control the execution of the processor. ghsmulti also enables you to
create an array of objects for a multiprocessor board, where each object
refers to one processor on the board. When id is an array of objects,
any method called with id as an input argument is sent sequentially
to all processors connected to the ghsmulti object. Green Hills MULTI
provides the communication between the IDE and the processor.

After you build the ghsmulti object id, you can review the object
property values with get, but you cannot modify the hostname and
portnum property values. You can use set to change the value of other
properties.

id=ghsmulti('propertynamel1’',propertyvaluel, 'propertyname2',...
propertyvalue2, 'timeout',value) sets the global time-out value in
seconds to value in id. MATLAB waits for the specified time-out period

6-17

ghsmulti

to get a response from the IDE application. If the IDE does not
respond within the allotted time-out period, MATLAB exits
from the evaluation of this function.

Examples This example demonstrates ghsmulti using default values.
id = ghsmulti('hostname', 'localhost', 'portnum',4444);

returns a handle to the default host and port number—1localhost and
4444,

id=ghsmulti('hostname', 'localhost', 'portnum',4444)

MULTI Object:

Host Name : localhost

Port Num 1 4444

Default timeout : 10.00 secs

MULTI Dir : C:\ghs\multi500\ppc\
See Also ghsmulticonfig

6-18

ghsmulticonfig

Purpose
Syntax

Description

Configure Green Hills MULTI
ghsmulticonfig
ghsmulticonfig launches the Embedded IDE Link MU Configuration

dialog box that you use to configure your Embedded IDE Link MU
software installation to work with MULTTI.

Note The Embedded IDE Link MU Configuration dialog box is the
only place you set the host name and port number configuration.

The dialog box, shown in the following figure, provides controls that
specify parameters such as where you installed MULTI and the name of
the host machine to use.

[=] Embedded IDE Link MU Configuration x|

— MULTI[R] Inzstallation

Directony: IE: hghsh_ 014 Browse. .. |

Configuration; Ippl:_stanl:lall:nne.tgt j

Debug server: Isimppc -cpu=ppchbhd fazt -dec -rom_use_entry

— Embedded IDE Link MU Service

Hosgt name: II::u:thu:ust Fort number:; |4444

[v Show server status window

oF. Cancel | Help Apply

Directory
Tells Embedded IDE Link MU software the path to your Green
Hills MULTI software installation. Enter the full path to the

6-19

ghsmulticonfig

Green Hills MULTI executable, multi.exe, in your installation.
To search for the executable file, click Browse.

If you have more than one version of MULTI, such as PowerPC
(ppc) and V800 (v800), specify the path to multi.exe in the
processor-specific version to use.

If you do not provide or select a correct path to the executable
file, Embedded IDE Link MU software ignores your entry and
returns an error message saying it could not find the executable
multi.exe in the specified or selected directory.

Configuration

Specifies the primary processor family to use to develop your
projects in MULTI. This corresponds to a .tgt file you select
before you can download and execute code. Select your family
file from the list. In many cases, the family standalone.tgt
option is the appropriate choice. For example, if you develop on
the Freescale MPC5xx, you could select ppc_standalone. tgt.
Embedded IDE Link MU software stores your selection. You do
not need to repeat this setup task unless you change processors.

Debug server
Like the primary target configuration, MULTI needs a debug
connection. This parameter enables you to enter the name of
your debug connection. Embedded IDE Link MU software uses
this connection to specify options about the processor, such as
processor to use, board support library, and processor endianness.

For more information about the Debug server, refer to your Green
Hills MULTI documentation.

For example, if you are using the Freescale

MPC5554 simulator, you could enter the string

simppc -cpu=ppc5554 -dec -rom_use_entry. Valid

strings for specifying simulators in Debug server appear in the
following table.

6-20

ghsmulticonfig

Processor | Type Configuration Debug Server Parameter
String

MPC5554 Simulator ppc_standalone.tgt simppc -cpu=ppc5554 -dec
-rom_use_entry

MPC7400 Simulator ppc_standalone.tgt simppc -cpu=7400

BlackFin Simulator bf_standalone.tgt simbf -cpu=bf537 -fast

537

NEC V850 | Simulator | v800_standalone.tgt sim850 -cpu=v850

NEC V850 | NEC v800 ppc_standalone.tgt 850eserv.mbs 850eserv2

Minicube -iecube -noiop

-df=C: /GHS/multi503/v850e/df3283.800
-dclock=4000,32768, swoff

MPC5554 Embedded | ppc_standalone.tgt mpserv_standard.mbs mpserv
target -usb
Green Hills
Probe

For information about using hardware in your development work,
refer to Connecting to Your Target in the MULTI documentation.
The string you specify for Debug server can be the command

or the name of the connection if you have one configured in the
Connection Organizer in MULTI.

Host name
Specify the name of the machine that runs the Embedded IDE
Link MU service. Enter localhost if the service runs on your PC.
localhost is the only supported host name.

Port number
Specify the port the Embedded IDE Link MU service uses to
communicate with MULTI. The default port number is 4444. If
you change the port value, verify that the port is available for
use. If the port you assign is not available, Embedded IDE Link
MU software returns an error when you try to create a ghsmulti
object.

6-21

ghsmulticonfig

Show server status window
Select this option to display the Embedded IDE Link MU service
status in the Microsoft Windows Task bar. Clearing the option
removes the service from the task bar. Best practice is to select
this option. Keeping this option selected enables the software to
shut down the communication services for Green Hills MULTI
completely.

6-22

halt

Purpose

Syntax

Description

Halt program execution by processor

halt(id)
halt(id,timeout)

halt(id) stops the program running on the processor. After you issue
this command, MATLAB waits for a response from the processor that
the processor has stopped. By default, the wait time is 10 seconds. If 10
seconds elapses before the response arrives, MATLAB returns an error.
In this syntax, the timeout period defaults to the global timeout period
specified in id. Use get(id) to determine the global timeout period.
However, the processor usually stops in spite of the error message.

To resume processing after you halt the processor, use run. Also, the
read(id, 'pc') function can determine the memory address where the
processor stopped after you use halt

halt(id,timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running.

timeout defines the maximum time the routine waits for the processor
to stop. If the processor does not stop within the specified timeout
period, the routine returns with a timeout error.

Examples

Use one of the provided demonstration programs to show how halt
works. From the Green Hills MULTI demonstration programs, load and
run one of the demonstration projects.

At the MATLAB prompt, create an object that refers to Green Hills
MULTI

id = ghsmulti
Check whether the program is running on the processor.

isrunning(id)

6-23

halt

ans =

id.isrunning % Alternate syntax for checking the run status.
ans =

1
halt(id) % Stop the running application on the processor.

isrunning(id)

ans =

Issuing the halt stops the process on the processor. Checking in Green
Hills MULTTI confirms that the process has stopped.

See Also isrunning
reset

run

6-24

info

Purpose

Syntax

Description

Information about processor

iid=info(id)

iid=info(id) returns property names and property values associated
with the debugger and processor referred to by id. iid is a structure
containing the information elements and values shown in the following

table:

Structure Element | Data Type | Description

iid.CurBrkPt String When the debugger is stopped at a breakpoint, the
field reports the index of the breakpoint. Otherwise,
this value is-1.

iid.File String Name of the current file shown in the debugger
source pane.

iid.Line Integer Line number of the cursor position in the file in the
debugger source pane. If no file is open in the source
pane, this value is -1

iid.MultiDir String Full path to your Green Hills MULTI installation
the root directory). For example

‘C:\ghs5_01'

iid.PID Double Process ID from the debug server in MULTI.

iid.Procedure String Current procedure in the debugger source pane.

iid.Process Double Program number, defined by MULTI, of the current
program.

iid.Remote String Status of the remote connection, either Connected
or Not connected.

iid.Selection String The string highlighted in the debugger. If there is
no string highlighted, this value i1s 'null’.

6-25

info

6-26

Structure Element

Data Type

Description

iid.State

String

State of the loaded program. The possible reported
states appear in the following list:
® About to resume

® Dying

® Just executed

® Just forked

® No child

® Running

® Stopped

® Zombied

For details about the states and their definitions,

refer to your Green Hills MULTI debugger
documentation.

iid.Target

Double

Unique identifier the indicates the processor family
and variant.

iid.Target0S

Double

Real-time operating system on the processor if one
exists. Provides both the major and minor revision
information.

iid.TargetSeries

Double

Whether the processor belongs to a series of
processors. For details about the processor
series, refer to your Green Hills MULTI debugger
documentation.

info returns valid information when the IDE debugger is connected to
processor hardware or a simulator.

Using info with multiprocessor boards

Method info works with targets that have more than one processor by
returning the information for each processor accessed by the id object

info

Examples

you created with ghsmulti. The structure of information returned is
identical to the single processor case, for every included processor.

On a PC with a simulator configured in MULTI, info returns the
following configuration information after stopping a running simulation:

iid=info(test_obj1)

iid =
CurBrkPt: 0
File: '...\Compute_Sum_and_Diff_multilink\Compute_Sum_and_Diff_main.c'
Line: 3

MultiDir: 'C:\ghs5_01'
PID: 2380

Procedure: 'main'’
Process: 0

Remote: 'Connected'’
Selection: '(null)'
State: 'Stopped’
Target: 4325392
Target0S: [2x1 double]

TargetSeries: 3

When you create a new ghsmulti object, the response from info looks
like the following before you load a project.

iid=info(test_obj2)
test_obj2 =

CurBrkPt: []

File: []
Line: []
MultiDir: []
PID: []

Procedure: []

6-27

info

Process: []

Remote: []
Selection: []
State: []
Target: []

TargetO0S: []
TargetSeries: []

See Also ghsmulti, dec2hex, get, set

6-28

insert

Purpose

Syntax

Description

See Also

Insert breakpoint in file

insert(id,addr)
insert(id, 'filename', 'linenumber')

insert(id,addr) inserts a breakpoint at the memory address
specified by the addr parameter .id identifies the session that adds
the breakpoint.

insert(id, 'filename', 'linenumber') inserts a breakpoint at the
line 'linenumber' in the file 'filename"'.

address

delete

run

6-29

isrunning

Purpose Determine whether processor is executing process
Syntax isrunning(id)
Description isrunning(id) returns 1 when the processor is executing a program.

When the processor is halted, isrunning returns 0.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to verify that the
program is running.

id=ghsmulti

MULTI Object:

Host Name : localhost

Port Num . 4444

Default timeout : 10.00 secs

MULTI Dir : C:\ghs\multi500\v800\

visible(id,1)

load(id, 'program.dxe', 'program')
run(id)

isrunning(id)

ans =
;
halt(id)

isrunning(id)

ans =

See Also halt
load

6-30

isrunning

run

6-31

list

6-32

Purpose

Syntax

Description

Information listings from MULTI IDE

infolist = list(id, 'type')
infolist list(id, 'type',typename)

infolist list(id,type) reads information about your MULTI
project and returns it in infolist. Different types of information and
return formats are possible depending on the input arguments you
supply to the 1ist function call.

Note list does not recognize or return information about variables
that you declare in your code but that are not used or initialized.

The type argument specifies which information listing to return. To
determine the information that 1ist returns, use one of the entries in
the following table.

type String Description

project Return information about the
current project in MULTI

variable Return information about one or
more embedded variables

function Return details about one or more
functions in your project

list returns dynamic MULTI information that you can alter. Returned
listings represent snapshots of the current MULTI IDE configuration
only. Be aware that earlier copies of infolist might contain stale
information.

Also, 1ist may report incorrect information when you make changes
to variables from MATLAB. To report variable information, 1ist uses
the MULTI API, which only knows about variables in MULTI. Your
changes from MATLAB, such as changing the data type of a variable,

list

do not appear through the API and 1ist. For example, the following
operations return incorrect or old data information from list.

infolist = list(id, 'project') returns a vector of structures that
contain project information in the format shown in the following table.

infolist Structure Element Description
infolist(1).name Project file name (with path)
infolist(1).primary Configuration file used for the

project. For more information,
refer to new

infolist(1).compileroptions | Compiler options string for the
project

infolist(1).srcfiles Vector of structures that
describes project source files.
Each structure contains the

name and path for each source
file—infolist(1).srcfiles.name

infolist(1).type Shows the project type, either
project or projlib. For more
information, refer to new.

infolist(2)....

infolist(n)....

infolist = list(id, 'variable’) returns a structure of structures that
contains information on all local variables within scope. The list also
includes information on all global variables. If a local variable has the
same symbol name as a global variable, 1ist returns the local variable
information.

infolist = list(id, 'variable’,varname) returns information about
the specified variable varname.

6-33

list

infolist = list(id,’variable’,varnamelist) returns information
about variables in a list specified by varnamelist. The information
returned in each structure follows the format in the following table.

infolist Structure Element Description

infolist.varname(1).name Symbol name.

infolist.varname(1).isglobal| Indicates whether symbol is global
or local.

infolist.varname(1).location| Information about the location of
the symbol.

infolist.varname(1).size Size per dimension.

infolist.varname(1).uclass ghsmulti object class that matches
the type of this symbol.

infolist.varname(1).bitsize | Size in bits. More information is
added to the structure depending
on the symbol type.

infolist. (varnamel).type Data type of symbol.

infolist.varname(2)....

infolist.varname(n)....

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = list(id, 'globalvar') returns a structure that contains
information on all global variables.

infolist = list(id, 'globalvar',varname) returns a structure that
contains information on the specified global variable.

infolist = list(id, 'globalvar',varnamelist) returns a structure
that contains information on global variables in the list. The
returned information follows the same format as the syntax
infolist = 1list(id, 'variable',...).

6-34

list

infolist = list(id, 'function') returns a structure that contains
information on all functions in the embedded program.

infolist = list(id, 'function',functionname) returns a structure
that contains information on the specified function functionname.

infolist = list(id, 'function',functionnamelist) returns a
structure that contains information on the specified functions in
functionnamelist. The returned information follows the format below
when you specify option type as function:

infolist Structure Element Description
infolist.functionname (1) .name Function name
infolist.functionname(1).filename Name of file where

function is defined

infolist.functionname(1).address Relevant address
information such as
start address and end

address
infolist.functionname(1).funcvar Variables local to the

function
infolist.functionname(1).uclass ghsmulti object

class that matches
the type of this
symbol—function

infolist.functionname(1).funcdecl Function
declaration—where
information such as
the function return
type is contained

infolist.functionname(1).islibfunc Is this a library
function?
infolist.functionname(1).linepos Start and end line

positions of function

6-35

list

6-36

infolist Structure Element Description

infolist.functionname(1).funcinfo Miscellaneous
information about
the function

infolist.functionname(2)...

infolist.functionname(n)...

To refer to the function structure information, 1ist uses the function
name as the field name.

infolist = list(id, 'type') returns a structure that contains
information on all defined data types in the embedded program. This
method includes struct, enum and union data types and excludes
typedefs. The name of a defined type is its C struct tag, enum tag or
union tag. If the C tag is not defined, it is referred to by the MULTI
compiler as '$faken' where n is an assigned number.

infolist = list(id, 'type',typename) returns a structure that
contains information on the specified defined data type.

infolist = list(id, 'type',typenamelist) returns a structure that
contains information on the specified defined data types in the list.
The returned information follows the format below when you specify
option type as type:

infolist Structure Element Description
infolist.typename(1).type Type name
infolist.typename(1).size Size of this type
infolist.typename(1).uclass ghsmulti object class

that matches the type of
this symbol. Additional
information is added
depending on the type

infolist.typename(2)....

infolist.typename(n)....

list

Examples

For the field name, 1ist uses the type name to refer to the type
structure information.

The following list provides important information about variable and
field names:

® When a variable name, type name, or function name is not a valid
MATLAB structure field name, 1ist replaces or modifies the name
so it becomes valid.

® In field names that contain the invalid dollar character $, 1ist
replaces the $ with DOLLAR.

¢ Changing the MATLAB field name does not change the name of the
embedded symbol or type.

This first example shows 1ist used with a variable, providing
information about the variable varname. Notice that the invalid field
name _with_underscore gets changed to Q_with_underscore. To make
the invalid name valid, 1ist inserts the character Q before the name.

varnameil = '_with_underscore'; % Invalid fieldname.
list(id, 'variable',varnamel);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore

ans=
name: '_with_underscore'
isglobal: O
location: [1x62 char]
size: 1
uclass: 'numeric'
type: 'int'

bitsize: 16

6-37

list

To demonstrate using 1ist with a defined C type, variable typename1
includes the type argument. Because valid field names cannot contain
the $ character, 1ist changes the $ to DOLLAR.

typenamel = '$fake3'; % Name of defined C type with no tag.
list(id, 'type',typenamel)
ans =

H

DOLLARfakeO : [typeinfo]
ans.DOLLARfakeO=

type: 'struct $fakeO'

size: 1
uclass: 'structure'
sizeof: 1

members: [1x1 struct]

When you request information about a project in MULTI, you see a
listing like the following that includes structures containing details
about your project.

projectinfo=1list(id, 'project')
projectinfo =
name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt’
type: 'project'’
targettype: 'TMS320C67XX'

srcfiles: [69x1 struct]
buildcfg: [3x1 struct]

See Also info

6-38

load

Purpose

Syntax

Description

See Also

Load file into processor

load(id, 'filename',timeout)
load(,timeout)

load(id, 'filename' ,timeout) transfers file 'my_file.dxe' to the
processor. filename can include a full path to the file, or the name of

a file that is in the current working directory of Green Hills MULTTI.
Use the function cd to check or modify the Green Hills MULTIworking
directory. Use this function only with program files that you created by
a Green Hills MULTI build process. When you issue the load command,
the command waits for the period defined by timeout in id for the
process to complete—ten seconds.

load(,timeout) adds the optional parameter timeout that defines
how long, in seconds, MATLAB waits for the specified load process to
complete. If the time-out period expires before the load process returns a
completion message, MATLAB generates an error and returns. Usually
the program load process works correctly in spite of the error message.

cd
dir

open

6-39

new

6-40

Purpose
Syntax

Description

Examples

New text, project, or configuration file
new(id, 'name', 'type')

new(id, ‘name', 'type') creates a new file, project, or build
configuration in the active project. Input argument name specifies the
name assigned to identify the new file, project, or configuration.

When you are creating a new executable project or library project, name
is a filename that can include the full path to the new file. If you omit
the path, new creates the new file or project in your current Green Hills
MULTT working directory.

If your name input argument does not include the file extension, and
you do not include the type argument, new creates a new executable
project in the IDE with the gpj extension.

To define the kind of entity to create, type accepts the strings shown in
the following table.

Type String Description

project Create a new MULTI executable project
in the current IDE instance. Sometimes
this is called a DSP executable file.

projectlib Create a new MULTI library project in
the current IDE instance.

new(id, 'my _project.gpj','project') creates a new project
'my_project.gpj' of type project.

The ’project’ argument is optional; the default project type is an
executable project. When you include the gpj extension on the name of
the new project my_project.gpj, new automatically creates a project
file.

new

new(id, 'my library project', 'projectlib') creates a new library
project in the IDE instance that id references. To create the library
project, you must include the 'projectlib' input argument.

See Also activate

close

6-41

open

Purpose

Syntax

Description

6-42

Open specified file

Note open(,'text') produces a warning and 'text' will not be
accepted in a future version.

open(,'program') produces a warning and will not be accepted in a
future version. Use load instead.

open(id, 'filename')
open(,'filetype')
open(,timeout)

open(id, 'filename') opens file filename in the IDE. If you specify
the file extension in filename, open opens the file of that type. If you
omit the file extension from the name, open assumes the file to open is
a project. Files that do not have the .gpj extension or do not have an
extension are assumed to be projects. The following table presents the
possible file types and extensions.

Extension Assumed Description
File Type
txt, .c, .asm, .cpp, .h, text Treated as text file

and all file extensions
not listed elsewhere in

this table

gpj or no extension project Treated as Green Hills
MULTT project

no extension—uses program Executable program file

filetype argument in

syntax

If the file to open does not exist in the current project or directory path,
MATLAB returns a warning and returns control to MATLAB.

open

See Also

open(,'filetype') identifies the type of file to open. This can be
useful when your project includes files of different types that have
the same name or when you want to open a project, project group, or
workspace. Using the input argument filetype overrides the file type
defined by the file extension in the file name. The preceding table
defines the valid file type extensions.

open(,timeout) adds the optional parameter timeout that defines
how long, in seconds, MATLAB waits for the specified load process to
complete. If the time-out period expires before the load process returns
a completion message, MATLAB returns an error. Usually the program
load process works correctly in spite of the error message.

cd
dir
load

new

6-43

profile

6-44

Purpose
Syntax

Description

Real-time execution report
profile(id, 'report')

profile(id, 'report') returns the real-time execution profile report
in HTML and graphical plot forms. The report input argument

is required. When you select Profile real-time execution in the
configuration parameters for your model, and then build and run your
model on a processor, this function accesses the report of the process
execution.

Note Real-time task execution profiling works with hardware only.
Simulators do not support the profiling feature.

To use profile to assess how your program executes in real-time,
complete the following tasks with a Simulink model:

1 Enable real-time execution profiling in the configuration parameters.
2 Select whether to profile by task or subsystem.

3 Build your model.

4 Download your program to the processor.

5 Run the program on the processor.

6 Stop the running program.

7 Use profile at the MATLAB command prompt to access the profiling
reports.

The HTML report contains the sections described in the following table.

profile

Section Heading Description
Worst case task Maximum task turnaround time for each
turnaround times task since model execution started.

Maximum number of | Maximum number of concurrent task
concurrent overruns overruns since model execution started.
for each task

Analysis of profiling | Profiling data was recorded over nnn seconds.
data recorded over The recorded data for task turnaround times
nnn seconds. and task execution times is presented in the

table below this heading.

Task turnaround time is the elapsed time between starting and
finishing the task. If the task is not preempted, task turnaround time
equals the task execution time.

Task execution time is the time between task start and finish when the
task is actually running. It does not include time during which the task
may have been preempted by another task.

Note Task execution time cannot be measured directly. Task profiling
infers the execution time from the task start and finish times, and the
intervening periods during which the task was preempted by another
task.

The execution time calculations do not account for processor time
consumed by the scheduler while switching tasks. In cases where
preemption occurs, the reported task execution times overestimate the
true task execution time.

Task overruns occur when a timer task does not complete before the
same task is scheduled to run again. Depending on how you configure
the real-time scheduler, a task overrun may be handled as a real-time
failure. Alternatively, you might allow a small number of task overruns
to accommodate cases where a task occasionally takes longer than

6-45

profile

normal to complete. If a task overrun occurs, and the same task is
scheduled to run again before the first overrun has been cleared,
concurrent task overruns are said to have occurred.

e Task profiling report
Sample HTML profiling report
® Subsystem profiling report)
Sample HTML profiling report

See Also load

run

6-46

file://file://T:/Adoc/matlab/doc/src/toolbox/idelinkmu/ug/sample_task_profiling_report.html
file://file://T:/Adoc/matlab/doc/src/toolbox/idelinkmu/ug/sample_task_profiling_report.html

read

Purpose

Syntax

Description

Read data from processor memory

mem=read (id,address)
mem=read(...,datatype)
mem=read(...,count)
mem=read(...,memorytype)
mem=read(...,timeout)

mem=read (id,address) returns a block of data values from the
memory space of the DSP processor referenced by id. The block to read
begins from the DSP memory location given by the input parameter
address. The data is read starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering
defined by the data type is automatically applied.

address is a decimal or hexadecimal representation of a memory
address in the DSP. In all cases, the full memory address consist of
two parts:

e The start address

® The memory type

You can define the memory type value can be explicitly using a numeric
vector representation of the address (see below).

Alternatively, the id object has a default memory type value that

is applied if the memory type value is not explicitly incorporated in

the passed address parameter. In DSP processors with only a single
memory type, it is possible to specify all addresses using the abbreviated
(implied memory type) format by setting the id object memory type
value to zero.

Note You cannot read data from processor memory while the processor
is running.

6-47

read

Provide the address parameter either as a numerical value that is a
decimal representation of the DSP memory address, or as a string that
read converts to the decimal representation of the start address. (Refer
to function hex2dec in the MATLAB Function Reference. read uses
hex2dec to convert the hexadecimal string to a decimal value).

The examples in the following table demonstrate how read uses the
address parameter:

address Description
Parameter Value

131082 Decimal address specification. The memory
start address is 131082 and memory type is 0.
This 1s the same as specifying [131082 0].

[131082 1] Decimal address specification. The memory
start address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as
a string entry. The memory start address is
131082 (converted to the decimal equivalent)
and memory type is 0.

It is possible to specify address as a cell array. You can use a
combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress

myaddress1 myaddressi1{1}=131072;
myadddressi{2}="'Program(PM) Memory';

myaddress2 myaddress2{1}='20000";
myadddress2{2}='Program(PM) Memory"';

myaddress3 myaddress3{1}=131072; myaddress3{2}=0;

mem=read(...,datatype) where the input argument datatype defines
the interpretation of the raw values read from DSP memory. Parameter
datatype specifies the data format of the raw memory image. The data
is read starting from address without regard to data type alignment

6-48

read

boundaries in the DSP. The byte ordering defined by the data type is
automatically applied. This syntax supports the following MATLAB

data types:

MATLAB Data Type

Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uinti6 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement

integer value

read does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem=read(...,count) adds the count input parameter that defines
the dimensions of the returned data block mem. To read a block of
multiple data values. Specify count to determine how many values

to read from address. count can be a scalar value that causes read

to return a column vector that has count values. You can perform
multidimensional reads by passing a vector for count. The elements
in the input vector of count define the dimensions of the returned data
matrix. The memory is read in column-major order. count defines the

6-49

read

6-50

dimensions of the returned data array mem as shown in the following
table.

® n — Read n values into a column vector.

e [m,n] — Read m-by-n values into m by n matrix in column-major
order.
® [m,n,...] — Read a multidimensional matrix m-by-n-by...of values

into an m-by-n-by...array.

To read a block of multiple data values, specify the input argument
count that determines how many values to read from address.

mem=read(...,memorytype) adds an optional input argument
memorytype. Object id has a default memory type value 0 that read
applies if the memory type value is not explicitly incorporated into the
passed address parameter.

In processors with only a single memory type, it is possible to specify
all addresses using the implied memory type format by setting the id
memorytype property value to zero. Blackfin and SHARC use different
memory types. Blackfin processors have one memory type. SHARC
processors provide five types. The following table shows the memory
types for both processor families.

String Entry for Numerical Entry for | Processor

memorytype memorytype Support

‘program(pm) memory’ | O Blackfin and
SHARC

’data(dm) memory’ 1 SHARC

’data(dm) short 2 SHARC

word memory’

’external data(dm) 3 SHARC

byte memory’

’boot (prom) memory’ |4 SHARC

read

Examples

See Also

mem=read(...,timeout) adds the optional parameter timeout that
defines how long, in seconds, MATLAB waits for the specified read
process to complete. If the time-out period expires before the read
process returns a completion message, MATLAB returns an error and
returns. Usually the read process works correctly in spite of the error
message.

This example reads one 16-bit integer from memory on the processor.

mlvar = read(id,131072,'int16"')

131072 is the decimal address of the data to read.

You can read more than one value at a time. This read command
returns 100 32-bit integers from the address 0x20000 and plots the
result in MATLAB.

data = read(id, '20000',"'int32',100)
plot(double(data))

write

6-51

regread

6-52

Purpose

Syntax

Description

Values from processor registers

reg=regread(id, 'regname', 'represent',timeout)
reg = regread(id, 'regname', 'represent')
reg = regread(id, 'regname')

reg=regread(id, 'regname', 'represent',timeout) reads the data
value in the regname register of the target processor and returns the
value in reg as a double-precision value. For convenience, regread
converts each return value to the MATLAB double datatype. Making
this conversion lets you manipulate the data in MATLAB. String
regname specifies the name of the source register on the target.
ghsmulti object id defines the target to read from. Valid entries for
regname depend on your target processor.

Note regread does not read 64-bit registers, like the cycle register on
Blackfin processors.

Register names are not case-sensitive — a0 is the same as AQ.

For example, the following registers are some of the many available
on the MPC5500 processor:

® ’acc’ — Accumulator A register

® sprg0 through sprg7 — SPR registers

Note Use read (called a direct memory read) to read memory-mapped
registers.

The represent input argument defines the format of the data stored in
regname. Input argument represent takes one of three input strings:

regread

represent String | Description

2scomp Source register contains a signed integer value
in two’s complement format. This is the default
setting when you omit the represent argument.

binary Source register contains an unsigned binary
integer.
ieee Source register contains a floating point 32-bit or

64-bit value in IEEE floating-point format. Use
this only when you are reading from 32 and 64
bit registers on the target.

To limit the time that regread spends transferring data from the
target processor, the optional argument timeout tells the data transfer
process to stop after timeout seconds. timeout is defined as the number
of seconds allowed to complete the read operation. You might find this
useful for limiting prolonged data transfer operations. If you omit the
timeout option in the syntax, regread defaults to the global time-out
defined in id.

reg = regread(id, 'regname', 'represent') does not set the global
time-out value. The time-out value in id applies.

reg = regread(id, 'regname') does not define the format of the data
in regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned
later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

6-53

regread

6-54

Examples

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for local variables as well.
One way to see this is to write a line of code that uses the variable and

see if the result is consistent.

register int a = 100;
int b;

b =a+ 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link MU software .

For the MPC5554 processor, most registers are memory-mapped and
consequently are available using read and write. However, use
regread to read the PC register. The following command demonstrates
how to read the PC register. To identify the target, id is a ghsmulti
object for MULTTI.

id.regread('PC', 'binary')

To tell MATLAB what data type you are reading, the string binary
indicates that the PC register contains a value stored as an unsigned
binary integer.

In response, MATLAB displays
ans =
33824
For processors in the Blackfin family, regread lets you access processor

registers directly. To read the value in general purpose register cycles,
type the following function.

regread

treg = id.regread('cycles', '2scomp');

treg now contains the two’s complement representation of the value
in AO.

See Also read, regwrite, write

6-55

regwrite

Purpose Write data values to registers on processor

Syntax regwrite(id, 'regname',value, 'represent',timeout)
regwrite(id, 'regname’',value, 'represent')
regwrite(id, 'regname’',value,)

Description regwrite(id, 'regname',value, 'represent',timeout) writes the
data in value to the regname register of the target processor. regwrite
converts value from its representation in the MATLAB workspace
to the representation specified by represent. The represent input
argument defines the format of the data when it is stored in regname.
Input argument represent takes one of three input strings:

represent String Description

2scomp Write value to the destination register as

a signed integer value in two’s complement
format. This is the default setting when you
omit the represent argument.

binary Write value to the destination register as an
unsigned binary integer.

ieee Write value to the destination registers as a
floating point 32-bit or 64-bit value in IEEE
floating-point format. Use this only when
you are writing to 32- and 64-bit registers on
the target.

String regname specifies the name of the destination register on the
target. Link id defines the target to write value to. Valid entries for
regname depend on your target processor. Register names are not
case-sensitive — a0 is the same as AQ.

For example, the following registers are some of the many available
on the MPC5500 processor:

® ’acc’ — Accumulator A register

6-56

regwrite

® sprg0 through sprg7 — SPR registers

Other processors provide other register sets. Refer to the documentation
for your target processor to determine the registers for the processor.

Note Use write (called a direct memory write) to write memory-mapped
registers.

To limit the time that regwrite spends transferring data to the target
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the write operation. You might find this
useful for limiting prolonged data transfer operations.

If you omit the timeout input argument in the syntax, regwrite
defaults to the global time-out defined in id. If the write operation
exceeds the time specified, regwrite returns with a time-out error.
Generally, time-out errors do not stop the register write process. The
write process stops while waiting for MULTI to respond that the write
operation is complete.

regwrite(id, 'regname',value, 'represent') omits the timeout
input argument and does not change the time-out value specified in id.

regwrite(id, 'regname',value,) omits the represent input
argument. Writing the data does not reformat the data written to
regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned

6-57

regwrite

6-58

Examples

See Also

later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for any local variables as well.

One way to see this is to write a line of code that uses the variable and
see 1if result is consistent.

register int a = 100;
int b;

b =a+ 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link MU software.

To write a new value to the PC register on a C5xxx family processor,
enter

regwrite(id, 'pc',hex2dec('100"'), 'binary"')

specifying that you are writing the value 256 (the decimal value of
0x100) to register pc as binary data.

To write a 64-bit value to a register pair, such as B1:BO, the following
syntax specifies the value as a string, representation, and target
registers.

regwrite(id, 'b1:b0',hex2dec('1010'), 'ieee')
Registers B1:B0 now contain the value 4112 in double-precision format.

read, regread, write

remove

Purpose Remove file from active project in IDE window
Syntax remove(id, 'filename', 'filetype')
Description remove (id, 'filename', 'filetype') removes the file named filename

from the active project in the id window of the IDE. If the file does not
exist, MATLAB returns a warning and does not remove any files. The
filetype argument is optional, with the default value of text. Possible
values for filetype are: project and text.

See Also add
cd

open

6-59

reset

6-60

Purpose
Syntax

Description

See Also

Stop program execution and reset processor
reset(id,timeout)

reset(id,timeout) stops the program executing on the processor and
asynchronously performs a processor reset, returning all processor
register contents to their power-up settings. reset returns immediately
after the processor halt.

The timeout is an optional parameter, with the default value set to the
global default value. The timeout determines how long, in seconds,
MATLAB waits for the processor to halt.

halt

load

run

restart

Purpose

Syntax

Description

See Also

Restart in IDE

restart(id)
restart(id,timeout)

restart(id) issues a restart command in the MULTI debugger. The
behavior of the restart process depends on the processor. Refer to your
Green Hills MULTI documentation for details about using restart with
various processors.

When id is an array that contains more than one processor, each
processor calls restart in sequence.

restart(id,timeout) adds the optional timeout input argument.
timeout defines an upper limit in seconds on the period the restart
routine waits for completion of the restart process. If the time-out period
1s exceeded, restart returns control to MATLAB with a time-out error.
In general, restart causes the processor to initiate a restart, even if the
time-out period expires. The time-out error indicates that the restart
confirmation was not received before the time-out period elapsed.

halt
isrunning

run

6-61

run

6-62

Purpose

Syntax

Description

Execute program loaded on processor

run(id)
run(id, 'runopt')
run(...,timeout)

run(id) runs the program file loaded on the referenced processor,
returning immediately after the processor starts running. Program
execution starts from the location of program counter (PC). Usually,
the PC is positioned at the top of the executable file. However, if you
stopped a running program with halt, the PC may be anywhere in the
program. run starts the program from the PC current location.

If id references more the one processor, each processors calls run in
sequence.

run(id, 'runopt') includes the parameter runopt that defines the
action of the run method. The options for runopt are listed in the
following table.

runopt string Description

run Executes the run and waits to confirm that
the processor is running, and then returns to
MATLAB.

runtohalt Executes the run but then waits until the

processor halts before returning. The halt can
be the result of the PC reaching a breakpoint, or
by direct interaction with Green Hills MULTI,
or by the normal program exit process.

run(...,timeout) adds input argument timeout, to allow you to set
the time out to a value different from the global timeout value. The
timeout value specifies how long, in seconds, MATLAB waits for the
processor to start executing the loaded program before returning.

Most often, the run and runtohalt options cause the processor to
Initiate execution, even when a timeout is reached. The timeout

run

indicates that the confirmation was not received before the timeout
period elapsed.

See Also halt
load

reset

6-63

setbuildopt

Purpose Set active configuration build options

Syntax setbuildopt (id,tool,ostr)
setbuildopt(id,file,ostr)

Description setbuildopt(id,tool,ostr) configures the build options to match
the passed OSTR on the specified build tool. This replaces the switch
settings that are applied when you invoke the command line tool. For
example, a build tool could be a compiler, linker or assembler. To be
sure the tool name is defined correctly, use the getbuildopt command
to read a list of defined build tools. If MULTI does not recognize OSTR,
setbuildopt sets all switch settings to default values for the build
tool specified by tool.

setbuildopt(id,file,ostr) configures the build options to match the
passed OSTR on the specified source file file. The source file must
exist in the active project.

See Also activate
getbuildopt

6-64

visible

Purpose

Syntax

Description

See Also

Visibility of IDE window

Note visible produces a warning and will be removed in a future
version.

visible(id,state)

visible(id,state) sets the visibility state of the IDE wind